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Abstract
This paper describes the further development of the Epidemiology of 
Eyam project at Winchester College since the publication of our previous 
paper (French et al 2019 Phys. Educ. 54 045008). A much wider cadre of 
students have been involved with this recent phase of the study, and we 
have also benefitted from a sabbatical collaboration with Oxford University 
Mathematical Institute. It is hoped that the research presented here can be 
used as a case study for an Extended Project Qualification (EPQ) or equivalent 
in a range of schools around the UK and worldwide. We feel that a project 
such as this, with a strong humanities and public health rooted context, could 
incentivise students of mathematics and sciences to participate in inter-
disciplinary teams over an educationally significant period, and offer an 
opportunity to develop vital independent research skills that are required at 
University, but are often difficult to experience in a School context. The main 
educational goal of our previous paper was to provide an suitable context 
to incentivise the introduction of Calculus ideas. In this paper we assume 
a slightly higher level of mathematical skill, and aim to present a more 
comprehensive analysis of the epidemiological model that we will refer to as 
the 'Eyam Equations.' We describe a 'semi-analytic' solution, and make the 
connection to the approximation of Kermack and McKendrick (Kermack and 
McKendrick 1927 Proc. R. Soc. Lond. A 115 700–21) which held sway for 
much of the early twentieth century. We revisit the Eyam 1660s plague data 
of William Mompesson, and also apply the model to Ebola data collected in 
Liberia during the 2014–16 epidemic in West Africa. Motivated by uncertainty 
in the size of the 'at-risk' Susceptible population, we re-parameterize the 
model in terms of alternative inputs which enable a curve-fitting mechanism 
to be conducted more efficiently, with a much more tightly bounded range of 
possible parameter values. In addition to a spreadsheet model, we have created 
a software application in the MATLAB environment which has dynamic 
tools that could potentially enable a sensible curve fit to be calculated very 
rapidly in response to new data. From a time series describing the Infective 
population of the 2014–16 Liberia Ebola epidemic, we can predict Infective 
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I(t), Susceptible S(t) and Dead D(t) populations, calculate the associated total 
population size N , calculate the Kendall Susceptible threshold ρ, and hence 
the Basic Reproduction Number R0 = N/ρ . For the Liberia Ebola data, these 
are: N = 2542, ρ = 1373, R0 = 1.85. Note this suggests that out of an ‘at risk’ 
population of N = 2542, about 75% may ultimately have been infected by the 
Ebola virus. In the WHO Ebola Response Team report (WHO Ebola Response 
Roadmap Situation Report), R0 = 1.83 ± 0.11 for the 2014–16 Liberia 
outbreak.

1. Introduction
The transition from school to university rep-
resents a significant change in educational 
approach, with independent study skills being 
particularly important in higher education. It is 
therefore beneficial for students preparing for 
university study to experience extended project 
work in which a less directed way of studying is 
nurtured and developed. There is also the impor-
tant difference in the use of multiple sources of 
ideas, which undergraduates new to the approach 
can find bewildering. In extreme cases, a lack of 
experience in paraphrasing or acknowledging a 
range of sources may even inadvertently land the 
inexperienced into trouble for plagiarism.

How best to provide a research experience 
at school is therefore of utmost importance. 
Students entering university are not initially pro-
vided with school-like delivery. Instead, they are 
immediately met with the lecture format, which 
often provides only background knowledge. To 
succeed, students must complete independent 
study around the topics introduced in lectures, fill 
in the finer details, and to develop and critique the 
present thinking within their disciplines.

Extended project work at school level can pro-
vide this experience in an otherwise very directed 
environment. To be effective, however, there must 
be a body of readily accessible mat erial for stu-
dents to research, and some aid with direction.

In this paper, we illustrate the exchange 
between students and supervisors arising out of 
our Epidemiology of Eyam project, which was first 
reported in our previous article [4]. The work of 
early twentieth century researchers in this field 
like Kermack, McKendrick, Kendall and Gani 
[1–3], are replete with examples of applications of 
mathematics accessible to a pre-university student. 
However, their original form, with a target audi-
ence of professional mathematicians, is perhaps 

somewhat formidable to all but the keenest stu-
dents, and therefore can be a barrier to learning. In 
this paper we have endeavoured to distil the essence 
of what we shall deem the ‘Eyam equations’ and 
communicate the key ideas in a form that is more 
accessible to a target audience of pre-university 
students of mathematics and the physical sciences. 
Once again, the key educational aspect here is that 
with the right combination of technical and moral 
support, the students discover for themselves how 
the mathematics they have learnt at school can be 
applied to something as important as predicting the 
dynamics of infectious disease outbreaks. Students 
are then highly incentivised to engage with the 
project, deriving the major results and applying 
them to the Eyam plague outbreak as the prototype 
problem for their newly acquired skills. Guidance 
by a knowledgeable supervisor is crucial, so that 
students do not become lost in the large volume of 
material, but in our experience, students are able to 
work through this project with only limited direc-
tion if the initial briefing and associated resources 
are appropriate to their prior knowledge.

Since the introduction of the Extended Project 
Qualification (EPQ) in 2006, the number of students 
taking up the qualification has increased dramatically. 
The research aspect of the activity allows students to 
develop independent study skills, which are benefi-
cial for subsequent work at university, especially if 
the EPQ involves rigorous academic content devel-
oped over an extended period. Our Epidemiology of 
Eyam project has provided a rich seam of material 
for extended study, which has so far inspired a great 
many of the students at Winchester College. We hope 
that it will continue to inspire students at Winchester, 
and elsewhere, as the study develops. Importantly, 
this project generates opportunities for inter-discipli-
nary research. There is scope for collaborative work 
across subjects including the physical and biologi-
cal sciences, mathematics and economics. Where 
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our previous paper [4] set the contextual scene and 
provided an introduction to calculus and associated 
numerical techniques, in this article we demonstrate 
that the elegant work in infectious disease epidemiol-
ogy from the first half of the twentieth century [1–3] 
can be presented in an accessible way to pre-univer-
sity students, providing them with a powerful context 
to delve into interesting problems and incentivising 
the acquisition of more advanced methods and skills. 
The techniques we employ to analyse data from the 
Eyam plague outbreaks of the 1660s can also be used 
with data from modern day epidemics, as we show in 
the context of the 2014–16 Ebola epidemic in West 
Africa [6, 11–13].

To permit our results to be replicated and 
extended by students, the computational work can 
be achieved using nothing more than a standard 
issue calculator and a spreadsheet, though as in 
previous papers [4, 5] we show this project can 
be more fully explored if a student implements 
their mathematical recipes in a coding environ-
ment such as MATLAB, a programming language 
that is widely used during undergraduate courses 
in the UK. To this end we have developed an 
intuitive software tool that can enable an epide-
miological model to be rapidly fitted to field data. 
From a time series of Infective population for 
the 2014–16 Liberia Ebola epidemic [6] we can 
predict Infective I (t), Susceptible S(t) and Dead3 
D(t) populations, calculate associated population 
N , calculate the Kendall Susceptible threshold 
ρ , and hence the Basic Reproduction Number 
R0 = N/ρ . For the Liberia data, these are:

N = 2542, ρ = 1373, R0 = 1.85.

Our paper follows a similar structure to that of 
Rachah and Torres (2015) (Discrete Dynamics in 
Nature and Society) [7], in the sense that we apply 
the same classic trio of differential equations to 

model S,I,D populations. However, in this paper 
we echo the work of Kendall et al to develop a 
‘semi-analytic’ solution scheme which we feel 
enables a student, or perhaps even a field epidemi-
ologist, to determine optimal parameters in a more 
intuitive manner.

2. The Eyam equations and how to solve 
them

2.1. The Eyam equations

In our original paper [4] we defined a trio of first-
order differential equations to describe the time t 
variation of Susceptible S , Infective I and Dead 
D subsets of a fixed (or ‘closed’) population. 
The model assumes a flow from Susceptible, to 
Infective, to Dead, with no possibility of rever-
sion from Infective to Susceptible, or indeed 
recovery from Infective.

In fact, it is better thought of the model as a 
pair of differential equations for D and S, plus the 
constraint of fixed population:

dD
dt = αI, dS

dt = −βSI
S + I + D = constant

.

Differentiating the constraint yields the third 
differ ential equation in I:

dS
dt +

dI
dt +

dD
dt = 0

... dI
dt = − dS

dt −
dD
dt

... dI
dt

= (βS − α) I .

We shall refer to this trio as the Eyam equations 
in the subsequent discussion. Rather than use 
the equations as motivation for a student making 
their initial forays into Calculus, (as we did in 
‘The Epidemiology of Eyam’ [4], and ‘Numerical 
Methods as an Introduction to Calculus’ [5]) let us 
now assume a greater prowess with mathematical 
technique; i.e. the tools a first year undergraduate 
in Physics should hopefully be familiar with. In 
other words, we shall not go straight to the Euler 
method4 and a spreadsheet to evaluate the Eyam 
equations. Before attempting to apply any numer-
ical method, let us see how far we can go towards 

3 In most epidemiological literature the Dead population is 
known as R ‘Removed.’ From a modelling point of view, 
Dead and Removed are the same, with the key character-
istic is that they no longer contribute to spread of disease. 
Interestingly, only 45% of infected actually went on to die in 
the Ebola 2014–16 outbreak in Liberia, and also, Ebola dead 
hosts often continue to contribute to transmission. Hence 
the meaning of 'Dead' may be somewhat ambiguous here. 
However, to avoid confusion with ‘Recovered’, (although 
none are permitted in the Eyam model) and to continue the 
narrative of [4], we will stick to D(t) meaning ‘those who 
have died due to the disease.’ 

4 i.e. approximate the Eyam equations as finite differences 
using a fixed timestep ∆t  and then solve iteratively, starting 
from: t = 0, I = I0, S = S0, D = 0.
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an analytic solution. In other words, can we devise 
a mathematical function which describes the time 
variation of the S, I, D curves, based upon param-
eters which we can readily obtain from epidemio-
logical field data?

2.2. The ups and downs of I

The Eyam equation for Infectives I is:

dI
dt

= (βS − α) I.

It is immediately apparent that dI
dt = 0 if I = 0 or 

S = α
β

. By performing a further time derivative, 
one can see that I is maximized when S = α

β
. This 

is the Susceptible population at the peak of the 
infection.

d2I
dt2 = (βS − α) dI

dt + Iβ dS
dt

∴ d2I
dt2 = (βS − α)

2I − I2β2S

∴ d2I
dt2

∣∣∣
S=α

β

=
Ä
β α

β − α
ä2

I − I2β2 α
β = −I2βα

∴ d2I
dt2

∣∣∣
S=α

β

< 0.

Note we use dS
dt = −βSI  in the second step.

Now since α
β

 is clearly a useful parameter, 
define:

ρ = α
β .

If ρ  can be found for a given infection, then this 
represents a threshold for the epidemic. If the 
‘local susceptible’ population5 is less than this, 
then the Eyam model predicts the number of 
infectives will reduce rather than grow.

Without any further investigation, it is clear 
that I(t) must form a single peaked curve, if the 
initial susceptible population is > ρ. Figures 1 and 
2 below illustrate an I(t) variation, and a curve fit 
based upon the recipe that we shall describe in 
this paper.

2.3. A problem of initial conditions, and 
dynamic exploration of the Eyam equa-
tions using a graphical user interface (GUI)

The Eyam model described in [4] has four key 
parameters S0, I0,α,β. In addition, the numerical 
evaluation6 requires a time-step ∆t , and a time 
range [0, tmax]. It is very instructive for students 
to gain an intuition how the overall shape of the 
curves S(t), I(t), D(t) varies with these param-
eters. An effective mechanism for achieving this is 
to code the Eyam model into a GUI, and use ‘slider 
bars’ (or an equivalent GUI mouse or pointing 
device driven interface) to enable the student to 
explore the change of S(t), I(t), D(t) dynamically 
in response to a change to the input parameters.
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Figure 1. Confirmed infectives versus time for Liberia 
Ebola outbreak July–October 2014 [6].
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Figure 2. Confirmed infectives versus time for Liberia 
Ebola outbreak July–October 2014 [6], underlaid with 
a curve fit. The solid line is the ‘semi-analytic’ model 
described in section 4, and the dashed curve is the K&K 
approximate curve described in section 3. (tmax, Imax) 
are the peak coordinates of the fitted curve. N  is the 
total population S + I + D, The Basic Reproduction 
Number R0 = N/ρ , and η is the ratio between the total 
cumulative death toll and the total population.

5 As suggested in the previous section, a modern epidemic 
might perhaps be modelled as a ‘locally closed’ population 
over a suitably truncated time period.
6 The Eyam solver used in the GUI is the Euler method 
described in [4].
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The vertical slider bars, a bit like graphical 
equalizers in an audio mixing desk, enable the 
four input parameters to be varied. The model in 
figure 3 is evaluated dynamically. A toggle option 
is available to overlay (or not) the Mompesson 
Eyam 1666 plague data. The maximum Infective, 
minimum Susceptible and maximum Dead values 
are calculated from the Eyam equations and dis-
played in the (orange) text box.

The GUI approach can be a very tangible 
goal for students keen to develop computer pro-
gramming skills. Below is a screenshot of an 
equivalent Eyam model GUI implemented in 
the Godot Game Engine environment by a Sixth 
Form student, Alfie Baxter.

Unfortunately, this method of modelling is 
not very applicable to most modern epidemics. 
The Eyam model requires us to know both the 
Infective and Susceptible populations at t = 0 and 
the model itself depends on parameters α and β.

The system of equations also assumes a closed 
population in the sense that I + S + D = I0 + S0.

For a modern epidemic such as Ebola in 
Liberia [6], we may only have a record of ‘con-
firmed infectives’ versus time, and the assumption 
of an isolated population with an associated lim-
ited susceptible population is likely to be flawed.

However, infective versus time curves do 
nonetheless appear to follow similar trends as per 
the Eyam model. We can therefore flip the logic 
of the problem: can we fit an Eyam model to work 

out what the dynamics of D(t) and S(t) would be, 
given the I(t) data? If we can do this, then per-
haps we can gain some insight into the size of the 
susceptible population that would catalyse the 
epidemic, and then perhaps use this insight to pos-
tulate whether certain social practices (e.g. mass 
social gatherings during funerals following Ebola 
deaths) are key accelerants for the epidemic.

Since S0 and β are very unlikely to be known 
a priori7, we shall adopt a more sensible set of 
initial conditions for the Eyam conditions, those 
that were employed by Kendall [2] in his criti-
cism of the seminal (1927) work of Kermack and 
McKendrick (‘K&K’) in their Contribution to the 
mathematical theory of epidemics [1].

We shall consider time to begin at the peak of 
the infection and extend time over range [−∞,∞] 
rather than be constrained by some artificial start-
ing point of data collection, as per the Mompesson 
Eyam 1666 data. We shall also set our Dead count 
to be zero at the infection peak, which means a 
negative value prior to this. This might seem a 
rather perverse thing to do, but it shall turn out to 
be very useful in simplifying the mathematics of 
the solution to the Eyam equations. Particularly 
as S = ρ at the peak of the infection.

Additionally, we shall scale our variables; 
time by α and S, I, D by ρ . In a similar way that 

7 α might be easier to guess, given it seems to lie within the 
range 2 < α < 4 [8,15,16]

Figure 3. The Eyam model coded in the form of a GUI, implemented in MATLAB.
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the equations of fluid dynamics can be solved ele-
gantly if characterized by dimensionless param-
eters groups such as a Reynolds Number8, we can 
use this approach to solve the Eyam equations in 
a more universal fashion.

Our new variables shall be:

τ = α (t − tmax)

x = I
ρ , y = S

ρ , z = D+D(t=−∞)
ρ

and our initial conditions shall be:

τ = 0; x = xmax; y = 1; z = 0

where xmax = Imax/ρ .
Note −D (t = −∞) is the cumulative dead 

from the beginning of the model time, to the peak 
of the infection. So, for z = 0 at the infection 
peak, we must subtract −D (t = −∞) from D. 
Why the minus sign? well D (t = −∞) will be 
negative.

2.4. Solving the Eyam equations using  
a ‘semi-analytic approach’

Using our scaled variables, we can re-write our 
Eyam equations:

dD
dt = αI ⇒ ρα dz

dτ = αρx

... dz
dτ

= x

dS
dt = −βSI ⇒ ρα dy

dτ = −βρ2yx
∴ α

β
dy
dτ = −ρyx

∴
dy
dτ

= −yx

dI
dt = (βS − α) I ⇒ ρα dx

dτ = (βρy − α) ρx

∴ dx
dτ =

Ä
β
αρy − 1

ä
x

∴
dx
dτ

= (y − 1) x .

By this procedure we have distilled the Eyam 
equations into their simplest form.

To solve, firstly divide the first two to find 
z(y) (which means D(S) if we know ρ)

dz
dτ = x, dy

dτ = −yx
∴ dy

dz = −y
∴
´ y

1
1
y′ dy′ =−

´ z
0 dz′

∴ ln y = −z

∴ y = e−z .

Since the fixed population constraint means:

I + S + D = Imax + ρ+ 0
⇒ x + y + z = xmax + 1.

Hence:

x = xmax + 1 − e−z − z .

8 When a Reynolds Number is low enough, a fluid will not 
behave in a turbulent fashion, regardless of the type of fluid 
or indeed the geometry and kinematics of the flow. All these 
factors are packaged into the Reynolds number. Re = uL

ν
 

where u is the fluid velocity, L is a characteristic linear 
dimension and ν  is the kinematic viscosity of the fluid. For a 
pipe of diameter D, the transition from laminar to turbulent 
flow typically occurs for Reynolds numbers above about 
2300 [14].

Figure 4. The Eyam model coded in the form of a GUI, implemented in the Godot Game Engine environment 
by Alfie Baxter.
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Note that with τ = 0, z = 0, this means that the 
total population N  does not equal ρ (x + y + z). 
In fact, it is:

N = ρ (x + y + z − z−)

which means we have a strong incentive to fig-
ure  out what z− = D (t = −∞) is in terms of 
model inputs. As alluded to in the caption of fig-
ure 2, R0 = N/ρ is called the Basic Reproduction 
Number. A more detailed explanation of its epide-
miological relevance is provided in appendix A.

We can use x = xmax + 1 − e−z − z and 
dz
dτ = x  to express an equation for τ(z). This is an 
integral expression, which unfortunately cannot 
be evaluated in a closed form sense; it requires 
a numerical approach9. Hence the ‘semi-analytic’ 
description of this solution scheme.

dz
dτ = xmax + 1 − e−z − z
∴
´ z

0
dz′

xmax+1−e−z′−z′
=
´ τ

0 dτ ′

∴ τ(z) =
ˆ z

0

dz′

xmax + 1 − e−z′ − z′
.

Example graphs of τ(z) and its integrand 
f (z) = 1

xmax+1−e−z−z  are given in figures 5 and 6.
It is clear from the form of f (z), that zero 

values of the denominator will cause an infinite 
asymptote. The meaning of this limit is more 
than pure mathematical consequence, since 

τ(z) =
´ z

0
dz′

x(z′).
x = 0 means I = 0, which represents 

the boundary values of the infection at times 
[−∞,∞]. Since I � 0, this means the limits of z 
are the solutions to:

xmax + 1 − e−z− − z− = 0
xmax + 1 − e−z+ − z+ = 0.

Since x(z) has a single maximum at z = 0, an 
iterative numeric solution can readily be found 
by using the efficiently converging Newton 
Raphson10 method, starting with initial values 
z± = ±1.

z(n+1)
± = z(n)

± −
xmax + 1 − e−z(n)

± − z(n)
±

e−z(n)
± − 1

.

9 E.g. a method which divides up the area under the inte-
grand, approximately, into strips of precisely known size 
(e.g. trapeziums, parabolae, cubics etc) and then sums these. 
The thinner the strip width, the more accurate the numeric 
integral. For MATLAB implementation, see appendix B.
10 f (z) = 0 can be solved by performing the iteration 
zn+1 = zn − f (zn)

f ′(zn)
. This can converge very rapidly as long as 

you do not encounter a stationary point where f ′(z) = 0.

−1 0

0

2

4

6
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12
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z

f(z) = (xmax + 1 – exp(–z) – z)−1

Figure 5. Plots of the integrand f (z) = 1
xmax+1−e−z−z  

of τ(z) for various values of xmax. The limits of z are 
determined by the Newton Raphson iterative method.

−2

−1 0 1 2 3 4

0
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z
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Figure 6. Plots of τ(z) =
´ z

0
dz′

xmax+1−e−z′−z′
 for 

various values of xmax. The integral has been evaluated 
numerically via the use of a cubic spline fit (see 
appendix C) between 1000 equally spaced z values 
between limits [z−, z+].
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2.5. Eyam equation solution summary

The method above defines a ‘recipe’ for the solu-
tion of the Eyam equations. In summary:
Inputs parameters:

ρ, Imax,α, tmax.

Mathematical model recipe:

 1.  Define xmax = Imax

ρ

 2.  Find limits of z, [z−, z+] by solving the fol-
lowing Newton-Raphson iteration:

zn+1 = zn −
xmax + 1 − e−zn − zn

e−zn − 1
.

  Start with z0 = ±1, which avoids any sta-
tionary points.

 3.  Evaluate numerically the τ(z) integral, over 
an equally spaced range between [z−, z+]

  Methods could be the Trapezium rule, ‘cubic 
spline fit and integrate’ etc. (See appendices 
B and C).

τ(z) =
ˆ z

0

dz′

xmax + 1 − e−z′ − z′
.

 4.  Determine x, y

x = xmax + 1 − e−z − z
y = e−z.

 5.  Determine S, I, D, t

t =
τ

α
+ tmax, I = ρx S = ρy, D = ρ (z − z−) .

 6.  Calculate population size N and hence Basic 
Reproduction Number R0

N = Imax + ρ− ρz−
R0 = N

ρ .

3. The K&K approximate solution  
to the Eyam equations

3.1. The K&K approximation of τ(z)

Until the criticism of Kendall [2], Kermack and 
McKendrick [1] was orthodoxy on the shape 
of I(t) curves, which they showed could take a 
sech2 functional form. As Kendall pointed out, 
and we will demonstrate using both the Liberia 
Ebola 2014–16 and the Mompesson Eyam 1966 
plague data, a symmetric form is not an accurate 

portrayal of the curve, and indeed can lead to 
additional errors in the prediction of D(t) and S(t) 
curves.

The K&K approximation is to assume:

e−z ≈ 1 − z + 1
2 z2

which means:

x ≈ xmax + 1 −
(
1 − z + 1

2 z2
)
− z

∴ x ≈ xmax − 1
2 z2.

For this to be valid, z � 1, which means the ratio 
of the dead D to the threshold ρ  must be smaller 
than unity. We can immediately see from figure 5 
that the z limits can be much larger than unity as 
we pass the infection peak, so this approximation 
will become increasingly crude as time beyond 
peak infection increases.

However, if only for the educational and his-
torical value, let us persist with the analysis.

Under the K&K approximation, the τ(z) 
integral becomes:

τ(z) =
´ z

0
dz′

xmax+1−e−z′−z′

τ(z) ≈
´ z

0
dz′

xmax+1−
Ä

1−z′+ 1
2 z′2
ä
−z′

=
´ z

0
dz′

xmax−
1
2 z′2

= 2
´ z

0
dz′

2xmax−z′2

= 2
´ z

0
dz′

(
√

2xmax)
2−z′2

= 2√
2xmax

tanh−1
Ä

z√
2xmax

ä

where the final step makes use of the standard 
integral:

ˆ
dx

a2 − x2 = 1
a tanh

−1 ( x
a

)
+ c.

Hence:

z ≈
√

2xmax tanh
(»

1
2 xmaxτ

)

and therefore:

x ≈ xmax − 1
2 z2

= xmax − 1
2 2xmaxtanh

2
(»

1
2 xmaxτ

)

= xmax

{
1 − tanh2

(»
1
2 xmaxτ

)}

∴ x ≈ xmaxsech
2
(»

1
2 xmaxτ

)
.
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In summary, the K&K approximate solution to 
the Eyam equations is:

x ≈ xmaxsech
2
(»

1
2 xmaxτ

)

z ≈
√

2xmax tanh
(»

1
2 xmaxτ

)

y = e−z.

Now lim
x→±∞

tanh(x) = ±1

So therefore: z± ≈ ±
√

2xmax

Hence:

t = τ
α + tmax, I = ρx, S = ρy

D = ρ
(
z +

√
2xmax

)
N = Imax + ρ− ρ

√
2xmax

R0 = N
ρ

.

3.2. Evaluation of the K&K model

To assess the efficacy of the K&K approximation, 
let us firstly apply the model to the Liberia Ebola 
data illustrated in figure 2. The same input param-
eters are used:

Imax = 323, tmax = 1.60, ρ = 1373, α = 2.84,

It is clear from figure  7 that the K&K approx-
imation overestimates I(t) below the peak, and 
underestimates beyond the peak. A similar discrep-
ancy between semi-analytic and K&K approaches 

can be seen for the Mompesson 1666 plague data. 
Both models use the same parameters:

Imax = 26.76, tmax = 0.900, ρ = 163.3, α = 2.987.

It is worth noting that the Mompesson data is 
based upon D = 0 at t = 0. Initial S, I  values are 
S(0) = 235, I(0) = 14.5, giving a total popula-
tion of 250. Although when to start the dead count 
is arbitrary, the total associated population N  is 
not, as we have shown in previous sections. It is 
likely there would have been deaths due to plague 
at Eyam before Mompesson started collecting 
data.

Calculating N  using the semi-analytic proce-
dure yields N = 275.42, so about 25 people would 
have died of plague at Eyam before Mompesson’s 
parish records began, had the infection obeyed the 
idealized Kendall curve from t = −∞11.

However, to directly compare to Mompesson’s 
data, we shall shift both exact and K&K D(t) 
curves by D(0), so all pass through the origin.

3.3. Problems with the K&K approach

The time symmetric K&K I(t) is not universally 
true, and the skew of the curve can lead to a dis-
crepancy in predictions, as illustrated in figures 7 
and 8.

11 Actually there was a previous Plague outbreak at Eyam, so 
the I(t) curve is only valid for the time range associated with 
Mompesson’s data.
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N = 2542, Imax = 323.3, R0 = 1.85, tmax = 1.6

α = 2.84, ρ = 1373, η = 0.751, S0 = 2467, I0 = 34.06

Figure 7. Liberia 2014–16 Ebola data underlaid with 
the semi-analytic, and K&K I(t) curve. The dashed line 
indicates the K&K sech2 approximation. The ‘exact’ 
(i.e. the semi-analytic approach defined in section 2.5) 
is the much better fit.

Eyam model fit
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dashed lines correspond to the K&K approximation.
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In addition, we also have the problem of 
what values to assign ρ  and α. This is a problem 
for our semi-analytic method too. Based on field 
data such as a World Health Organization (WHO) 
Situational Report [6], all we have is a set of {t, I} 
data. For the Mompesson records, we showed in 
[4] how α,β  (and hence ρ = α

β
) could be obtained 

from the S(t), I(t), D(t) dataset. For most epide-
miological data, we do not have this luxury.

These problems shall be addressed in the 
next section.

4. A semi-analytic solution to the Eyam 
equations without ρ

4.1. The problem with ρ

The Eyam equation  solution summary in 2.5 
requires the inputs:

ρ, Imax,α, tmax.

If the only data available is {t, I}, then (tmax, Imax) 
can be readily guessed directly from the data12.

The range of α is relatively well bounded 
in epidemiological literature. For many epidem-
ics, it is typically within the range of 2 < α < 4. 
(Units of months−1). [8, 15, 16].

The problem parameter is ρ , which can vary 
significantly with the populations involved. For 
Mompesson 1966, ρ = 163.3, for Liberia Ebola 
2014–16, ρ = 1538.

4.2. Replacing ρ with η

We cannot avoid having four inputs to our Eyam 
model, but we can replace ρ  with a different vari-
able that has a much more well-defined range of 
values. In fact, it is possible to find a parameter η 
which has bounds of [0, 1] .

The total dead is given by:

Dtot = ρ (z+ − z−) .

Clearly this cannot exceed the total population N , 
or indeed be less than zero.

0 < Dtot
N < 1

∴ 0 < ρ(z+−z−)
N < 1

∴ 0 < z+−z−
N/ρ < 1.

Define η =
z+ − z−

N/ρ
, which must be in the 

range [0,1].
Now since x = xmax + 1 − e−z − z,
when x = 0:
xmax + 1 − e−z− − z− = 0 and 
xmax + 1−e−z+ − z+ = 0
Now: Nρ = xmax + 1 − z−
Therefore using xmax + 1 − e−z− − z− = 0

N
ρ − e−z− = 0

∴ z− = − ln

Å
N
ρ

ã
.

From the definition of η:

z+ = η N
ρ + z−

∴ z+ = η
N
ρ
− ln

Å
N
ρ

ã
.

We can now substitute this in the equation  for 
x = 0 for positive z:

xmax + 1 − e−z+ − z+ = 0
xmax + 1 − z− − e−z+ − z+ = −z−

N
ρ − e−z+ = z+ − z−

N
ρ − e−η N

ρ+ln( N
ρ ) = N

ρ η.

With the last step noting:

η = z+−z−
N/ρ

∴ ηN
ρ = z+ − z−.

Hence:

N
ρ − N

ρ e−η N
ρ = N

ρ η

∴ 1 − e−η N
ρ = η

∴
N
ρ

= − ln (1 − η)

η
.

If we specify η we can therefore define:

z+ = η N
ρ − ln

Ä
N
ρ

ä

∴ z+ = − ln (1 − η)− ln

Å
− ln (1 − η)

η

ã

z− = − ln
Ä

N
ρ

ä

∴ z− = − ln

Å
− ln (1 − η)

η

ã
.

If we start with η we do not need to solve an itera-
tive equation for z±, so this method will signifi-
cantly reduce computation time.

12 Or indeed a good first guess. We will show in section 4.5 
how an initial guess based upon the largest I value can be 
refined automatically.
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Also:

N
ρ = xmax + 1 − z−
⇒ xmax = N

ρ − 1 + z−

∴ xmax = − ln (1 − η)

η
− 1 − ln

Å
− ln (1 − η)

η

ã
.

So, if we know Imax we can find:

ρ =
Imax

xmax
.

4.3. Eyam equation solver via η and a GUI

Let us summarize our Eyam equation solver using 
the η = Dtot

N  parameter:

z+ = − ln (1 − η)− ln
Ä
− ln(1−η)

η

ä

z− = − ln
Ä
− ln(1−η)

η

ä

xmax = − ln(1−η)
η − 1 − ln

Ä
− ln(1−η)

η

ä

ρ = Imax

xmax

τ(z) =
´ z

0
dz′

xmax+1−e−z′−z′

x = xmax + 1 − e−z − z
y = e−z

t = τ
α + tmax, I = ρx S = ρy, D = ρ (z − z−)

N = Imax + ρ− ρz−
R0 = N

ρ

.

Although we know 0 < η < 1, we still need a 
practical mechanism to determine what best fits 
a {t, I} data set.

To achieve this, we have developed the GUI 
concept described in section 2.3. A screenshot is 
provided in figure 9, with the Mompesson plague 
data as an example.

Figure 9. MATLAB GUI which enables Eyam model solver input parameters to be varied until a visual fit to 
data is achieved. The slider bars on the right-hand side allow Imax, tmax,α, η to be changed dynamically. In the 
graph, solid lines represent the semi-analytic model, and the dashed lines correspond to the K&K approximation.

Figure 10. An SSD surface is formed by varying 
α and η parameters over the range 2 � α � 4 and 
0.05 � η � 0.95.
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Inputs of Imax = 26.76, tmax = 0.900, α = 2.987 
were set as per the calculation performed in 

[4], and η was found to be η = 0.6851  when 

ρ = 163.3.
The correct values of I0 = 14.5, S0 = 235 are 

predicted, as is the total population of N = 275. 
Note in figure 9, the D(t) curves have been shifted 
by 25 such that D(0) = 0, to enable comparison 

with the Mompesson data where the dead count 
starts at zero when time is zero.

4.4. Sum of squared differences

To offer a quantitative measure of curve fit, beyond 
visual correlation, a ‘sum of squared differences’ 
(SSD) is computed. This is the sum of the squares 
of the difference of model I(t) values, interpo-
lated at {t, I} data times, to the corresponding I 
data values. In the above example SSD = 39.075. 
Alternatively, SSD can also include the sum of 
squared differences between model S  and D pre-
dictions and their data counterparts, if the latter 
exist. The ‘Use S, D?’ GUI checkbox allows 
for both possibilities.

4.5. Optimising tmax, Imax,α, η

The SSD metric can be used as the basis of an 
automated optimisation of Eyam model param-
eters. The principle is to create a surface based 
upon two of the four Eyam model input parameters 
tmax, Imax,α, η, and determine the parameter pair 
coordinate associated with the minimum of this 
surface. An ideal situation would be to explore all 

Figure 11. Eyam solver MATLAB GUI with tmax = 0.900, Imax = 26.76. Data corresponds the Mompesson 1666 
plague. The curves formed based upon the ‘optimal’ values of α, η are plotted in figure. Although SSD improves 
from 39.1 (see figure 9) to 29.8, it is clear that the S  and D curves are not well matched to the Mompesson data.

Figure 12. An SSD surface is formed by varying 
α and η parameters over the range 2 � α � 4 and 
0.5 � η � 0.95.
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four parameters in some form of 4D space, but this 
would be somewhat difficult to visualize!

Which pair of inputs from tmax, Imax,α, η 
should be chosen? The natural grouping appears 
to be tmax, Imax i.e. visual characteristics of the 
I(t) curve peak, and α, η, which relate to the width 
and skew of the I(t) curve. The Eyam solver GUI 
has two ‘Optimize’ buttons which construct a 
mesh of parameters values, based upon the limits 
set by the sliders, and run the model over the full 
range. In figures 10–15 below (which are based 
upon the Mompesson data defaults), a grid of 
20 × 20 parameters are used.

Automatic optimization based upon α and 
η parameters actually makes for a worse fit, if 
only I data is used in the computation of SSD. 
Figures 12 and 13 show the effect of comparing 
I, S, D in the SSD. This results in a much better 
fit. (Although note the SSD numbers are now 
much higher than if just I is compared).

Figure 12 indicates a somewhat flat SSD 
surface with α and η parameters, so it is perhaps 
harder to judge whether this method of automatic 
optimization confers much benefit over a manual 
movement of the GUI sliders until a visual fit is 
obtained.

An alternative automated optimization based 
upon fixing α and η and varying tmax, Imax offers 
a much more obvious optimum, and is therefore 

Figure 13. Eyam solver MATLAB GUI with tmax = 0.900, Imax = 26.76, and optimized for α, η. Data 
corresponds the Mompesson 1666 plague. SSD improves from 4637 to 4165, if calculated to include S, D data as 
well as I.

Figure 14. An SSD surface is formed (3D and 2D 
views) using the Mompesson data, by varying tmax and 
Imax parameters, and fixing α, η.
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suggested as the preferred method. Figures 14 and 
15 below illustrate this for the Mompesson data.

5. A story of students and spreadsheets
The narrative presented in sections 2 till 4 repre-
sents the authors most up-to-date understanding 
of the scenario posed and using what we hope are 
the most appropriate language and computational 
tools. The actual modelling process, which has 
been done over the past two years, was of course 
a much more meandering narrative; a slow pro-
cess of gradual revelation and multiple iterations. 
Although this paper describes a mathematical 
model applied to epidemiology, the main aim of 
the study is not to contribute to epidemiological 
knowledge. We would prefer to leave that to the 
professionals! Our primary goal as educators is 
to develop a rich context to incentivise our stu-
dents to engage in research and apply the skills 
they learn at school or university. A small, but 
growing, group of students have made signifi-
cant contrib utions to this paper. It is important 
that some of the details of their involvement is 
recorded, as it will hopefully illustrate that the 
Eyam story can be re-explored by students with a 
wide range of skills.

Dexter Poon has been working on the 
Epidemiology of Eyam for about a year and began by 
making a study of the K&K model using his Pre-U 
Further Mathematics Calculus skills. He was able to 
derive the tanh and sech2 forms of the D(t) and I(t) 
curves, starting with the idea that t = 0 at the peak 
of the infection. To help work through the deriva-
tion without being overwhelmed, both the K&K [1] 
and the Kendall [2] papers were literally chopped up 
and provided in manageable sections. Dexter then 
worked with JPC in developing in spreadsheet form 
what is described in section 4 as a ‘semi-analytic’ 
Eyam solver, which uses the η parameter rather 
than ρ. This was initially done without a MATLAB 
numeric integration routine, and instead each sam-
ple point of the τ(z) curve was evaluated using the 
integration function of a Casio FX-991EX calcula-
tor, which is standard issue at Winchester College 
and relatively inexpensive. Although time consum-
ing, there was a certain excitement in seeing the 
curves develop. A spreadsheet was also used to 
solve for z± (and hence the limits of D) as described 
in section  2.4. Finally, the SSD surface concept 
was used, initially with a small mesh of α, η about 
what was deemed to be a sensible guess of optimal 
param eters. This led to a modest optimisation of 
the Liberia Ebola I(t) fit, although the ‘crumpled 

Figure 15. S, I, D curves using optimized tmax, Imax parameters. There is a marginal SSD improvement from 
39.1 to 38.2.
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paper’ shape of the surface suggested that this pair 
of parameters may not be the most appropriate. This 
initial invest igation was the spur to the more com-
prehensive analysis afforded by our MATLAB tools 
described in the previous section.

We have also involved several other students, 
perhaps the keenest being Alfie Baxter, who cre-
ated an alternative Eyam Euler solver-based 
GUI using a Game Engine based programming 
environ ment (see figure 4).

From a pedagogical perspective, our recom-
mended educational path through the Eyam story 
is as follows:

 1.  Start from the original Euler model of the 
Mompesson 1666 plague data described in 
[4]. Once the context is set via the educator 
(via reading the introduction to the paper and/
or our associated slide pack), students should 
solve the Eyam equations via a spreadsheet 
(see figure 16).

 2.  Students that are more familiar with calculus 
should repeat the steps in sections 2 and 3. 
Based upon recommended input parameters 
for tmax, Imax,α, ρ, they should attempt to 
generate the curves for the Mompesson and 
Liberia Ebola epidemics. Using the K&K 
approximation would be relatively straight-
forward in a spreadsheet such as Excel. 
Numeric evaluation of the τ(z) is more 
technically difficult, although a heroic semi-
manual approach with a calculator will work 
eventually—but only for a very persistent 
student!

 3.  The τ(z) evaluation should be a strong 
incentive to use a programmatic tool such 
as MATLAB, Python or equivalent. As we 
discovered with Alfie Baxter, some students 
already have experience in a coding environ-
ment, and they should be free to choose to solve 
the problem in the language that they feel most 
comfortable. However, if students are starting 
out, MATLAB would be our recommendation.

 4.  At this point, students should explore the 
Eyam scenario using our MATLAB GUI, 
starting with the Mompesson and Liberia 
Ebola data, and then given the challenge 
to fit curves to other epidemics based upon 
WHO situational reports or equivalent. It 
would also be instructive for them to create 
their own Eyam solver from first principles. 
Rather than the complexity of a GUI, a simple 
MATLAB program to calculate and plot the 
S(t), I(t), D(t) curves, overlaid with actual 
data, is suggested. The teacher could provide 
them with model inputs tmax, Imax,α, η and 
associated data. An even better situation 
would be for the students to determine optimal 
parameters themselves from the MATLAB 
Eyam GUI, and then check using their own 
code that they can regenerate the same curves.

6. Conclusions

6.1. A rich context for cross-curricular study

Our Epidemiology of Eyam project has proved to 
be a rich seam of material for sixth form students 

Figure 16. Solving the Eyam equations using a spreadsheet is a recommended first step for students. In this initial 
situation, they should use the Euler method, and Mompesosn’s 1666 data.
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interested in extended project work in mathemati-
cal modelling. With encouragement and a little 
technical guidance, students can develop the tech-
niques and approaches that allow them to make 
sense of epidemiological data, both historical and 
very much in the present. The amazing human 
story of the Eyam plague outbreaks in 1660s 
Derbyshire provides, in addition, a universal 
cross-curricular pedagogical context, which can 
then enable a linkage of this work to many other 
academic disciplines. Students of mathematics 
can contribute creatively with biologists, physi-
cists, chemists, computer scientists, historians 
and, given this work all began with a study of a 
play The Roses of Eyam, the arts too.

6.2. A neat, holistic problem of applied 
mathematics

In this paper we present many opportunities to 
demonstrate the application of pre-university and 
early undergraduate mathematics, to something 
as important as modelling the spread of infec-
tious disease. Each stage requires the gathering of 
several methods and techniques. Since the intro-
duction of modularisation of A-level mathemat-
ics in the UK, there has been a growing risk of a 
lack of synoptic overview, for which this form of 
holistic project work may provide a remedy. The 
new linear A-levels will hopefully deal with this 
shortfall as well, though there will always be need 
for neat, classroom appropriate examples that can 
bring techniques together and thereby bring them 
to life.

6.3. Summary of our epidemiological 
research

The work here extends our previous paper’s Euler 
approach [4] by calculating the Kendall ‘exact’ 
curve that would be equivalent. This is what we 
refer to as a ‘semi-analytic solution’ in sections 2 
and 4. We apply the methods developed to the 
Mompesson 1666 Eyam plague outbreak, as well 
as the 2014–16 Ebola epidemic in Liberia. Using 
the optimization procedure described in sec-
tion 4.5, our optimal parameters for the Liberia 
Ebola data are:

tmax = 1.605, Imax = 323.3, α = 2.84, η = 0.751

and with derived parameters:

ρ = 1373, N = 2542, R0 = 1.85.

Note this suggests that out of an ‘at risk’ popula-
tion of N = 2542, about 75% may ultimately be 
infected by the Ebola virus.

To achieve the result above, we performed 
several iterations using both the (tmax, Imax) 
and (α, η) optimizations. The I(t) in figure 17 is 
indeed the same graph in figure 2. Figure 18 is the 
2D rendering of the SSD surface used in the final 
automated (tmax, Imax) optimization.

We think that having an easy-to-use software 
tool may possibly be of use to modern epidemiol-
ogists as well, in addition to its educational value. 
To determine the predicted time series of an infec-
tive population, and to be able to suggest char-
acteristic parameters of the epidemic such as the 
associated population N  and Basic Reproduction 
number, could be useful in the field. Our tools 
could form part of an initial analysis of epidemio-
logical data, and perhaps provide a sanity check 
of more detailed models.

In the WHO Ebola Response Team report 
[15], R0 = 1.83 ± 0.11 for the 2014-16 Liberia 
outbreak, so it is encouraging that our value of 
R0 = 1.85 is within the same range.

6.4. Future projects

We are currently pursuing two parallel projects 
with our Eyam research group at Winchester, 
now also linked to the Mathematical Institute at 
Oxford University. The first is to re-imagine the 
Eyam equations in stochastic form, using statis-
tical methods to predict how a given infection 
may spread, and comparing this to the deter-
ministic methods of this and our previous paper. 
The second is to update a physical model of the 
Eyam system. We first reported in our previous 
paper [4] a Phillips MONIAC style system based 
upon a series of connected water vessels, pipes 
and pulleys. We are in the process of developing 
an improved version with our students and labo-
ratory technicians. We are also in the process of 
developing a chemical analogue of the Eyam sys-
tem via an auto-catalytic reaction. In addition, we 
have been exploring a stochastic variant (‘Reed 
Frost’) in using a physical implementation that is 
used in the teaching of epidemiology to medical 
students at Oxford University.
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Appendix A. Basic reproduction numbers
The pair of differential equations  in section  2.1 
for Susceptible S(t) and Infectives I(t) may be 
considered near the disease-free equilibrium posi-
tion (S0, 0) by expanding with a Taylor expansion. 
Let:

ds
dt = f (S, I)

dI
dt = g (S, I) .

To first order in small displacements from the 
disease-free equilibrium:

ds
dt = f (S0, 0) + (S − S0)

∂f
∂S + (I − 0) ∂f

∂I
dI
dt = g (S0, 0) + (S − S0)

∂g
∂S + (I − 0) ∂g

∂I

where the partial derivatives are evaluated at the 
equilibrium.

Now, f (S0, 0) = g (S0, 0) = 0, at the dis-
ease-free equilibrium, since dS/dt and dI/dt both 
equal zero at this point. If we represent the small 
displacements from the equilibrium by x1 and x2 
we have:

Figure 17. An optimized I(t) curve fit to the Liberia 2014–16 Ebola data using our Eyam model MATLAB GUI.

Figure 18. An SSD surface is formed, using the Liberia 
Ebola data, by varying tmax and Imax parameters, and 
fixing α, η.
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dx1
dt = ∂f

∂S x1 +
∂f
∂I x2

dx2
dt = ∂g

∂S x1 +
∂g
∂I x2

which, in matrix form with the values of the 
partial derivatives evaluated at the equilibrium 
inserted, becomes:

Å
ẋ1
ẋ2

ã
=

Å
0 −βS0
0 (βS0 − α)

ãÅ
x1
x2

ã

At this point it is informative for students to 
look at what this ‘linearization’ has achieved by 
considering the 1D case, noting the well-known 
differential equation  ẋ = kx has the exponential 
solution x (t) = cekt  where c is the initial value 
of x  =  x(0). As time progresses, we see that the 
value, and the sign of k tells us that as t increases, 
x either moves towards x  = 0 for k  <  0, away 
from x  = 0 for k  >  0, or remains a constant for 
k  =  0. This is a statement on the stability of the 
point x  = 0: we see that we could classify x  = 0 as 
a stable equilibrium in the case of k  < 0 because 
of the tendency for the solution to return to the 
point. The opposite is of course true for the k  > 0  
case. So, extending this to our 2D situation and 
writing the components x1 and x2 as follows:

Å
x1
x2

ã
=

Å
c1ekt

c2ekt

ã

leads to the eigenvalue equation:
Å

0 −βS0
0 (βS0 − α)

ãÅ
c1
c2

ã
= k
Å

c1
c2

ã

with 
Å

c1
c2

ã
 as the eigenvector and k the eigenvalue. 

This expression only has a non-trivial solution13, 

if the determinant below is equal to zero:
∣∣∣∣
−k −βS0
0 (βS0 − α)− k

∣∣∣∣ = 0

and so, we have the quadratic:

k {k − (βS0 − α)} = 0

So, k  =  0 or k  = (βS0 − α). Here our 1D example 
gives us insight: if k is greater than zero, then the 
disease-free equilibrium is unstable, and there will 
be an increase in I, which of course corresponds 

R
0 = 4

Figure 19. A Basic Reproduction Number of R0 = 4 implies one infective infects four susceptibles. Each of these 
becomes infectives and then go on to inject four more susceptibles, etc. Until you run out of susceptibles!

13 The trivial solution being 
Å

c1
c2

ã
=

Å
0
0

ã
.
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to an epidemic situation. We rearrange to see that 
the threshold condition may be represented as 
βS0
α = 1 with the quantity βS0

α > 1 representing the 
condition for an epidemic. This quantity is called 
the Basic Reproduction Number and denoted by 
the symbol R0. A quick reminder of the meanings 
of the quantities here:

 •  α behaves like a decay constant for the death 
process, so 1/α is the mean lifetime of an 
infective.

 •  β is an infection rate or probability of an 
individual infective infecting susceptibles 
per unit time.

 •  S0 is the initial number of susceptibles avail-
able to be infected at the beginning.

The quantity βS0
α  is essentially:

probability per time × time × number

or the expected number of cases in that time. The 
diagram in figure 19 shows how this idea might 
be illustrated. Here R0 = 4, i.e. each infective 
infects four susceptibles, and each of them go on 
to infect four more.

One should note that the meaning of R0 
described here is not unique. Certain epidemiologi-
cal systems, e.g. those involving an additional vector 
population, may result in the ‘branching ratio’ illus-
trated in figure 19 depending on R2

0 rather than R0. 
As systems become more complicated and the fine 
details of the biology become important, there is a 
better chance of defining R0 in terms of the details 
specific to the disease and environmental conditions.

Appendix B. MATLAB code for  
numerical evaluation of τ(z) integral
Two methods have been used to evaluate the integral:

τ(z) =
ˆ z

0

dz′

xmax + 1 − e−z′ − z′
.

For students attempting this for the first time, 
and with access to MATLAB, we recommend 
the Trapezium Rule as this can be easily coded. 
The idea is to define an equally spaced range of z 
between its limits z± (1000 steps are used in this 
paper) and then evaluate:

f (z) =
1

xmax + 1 − e−z − z
.

We assume the area under f (z) is the summed 
area of trapeziums formed by piecewise straight 
lines joining the {z, f (z)} sample points.

The trapezium rule may be implemented in 
MATLAB via the following code:

%trapezium_rule
% Integration via the trapezium rule. 
x is an equally spaced vector, and y
% are the corresponding integrand 
values. The integration is from x(1) 
to
% the values in x. Output vector I has 
the same dimensions as x.
function I  =  trapezium_rule(x, y)
dx  =  x(2)-x(1);
I  =  dx*(cumsum(y) - y(1)/2 - y(end)/ 
2);

The built-in function cumsum(y) yields the 
cumulative sum of elements of a vector y. For 
example:

y  =  [1,2,3,4,5]; 
cumsum(y)  =  [1,3,6,10,15]

This can then be used by another function, 
which evaluates the integral τ (z). Note the nega-
tive and positive values of z must be evaluated 
separately.

%tor_of_z
% Evaluates numeric integral of 
tor(z).
function [z,tor]  =  tor_
of_z(zminus,zplus, Ni, xmax)
dz  =  0.01;
z_pos  =  linspace(0, zplus - dz, Ni);
z_neg  =  linspace(0, zminus  +  dz, Ni);
f_pos  =  1./(xmax  +  1 - exp(-z_pos) 
- z_pos);
f_neg  =  1./(xmax  +  1 - exp(-z_neg) 
- z_neg);
tor_pos  =  trapezium_rule(z_pos, 
f_pos);
tor_neg  =  trapezium_rule(z_neg, 
f_neg);
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z  =  [fliplr(z_neg),z_pos];
tor  =  [fliplr(tor_neg),tor_pos];

Appendix C. Calculus with cubic-splines
Although much more of a ‘black-box’ approach, 
our preferred method of performing numerical 
integration (or indeed differentiation) from a set 
of {x, y} data points is to firstly determine a cubic 
spline fit. This is the method used to create all the 
‘semi-analytic’ curves in this paper.

In MATLAB, we have implemented the pro-
cedure into a higher-level function integrator. 
Although this looks simpler than the trapezium rule 
implementation, it masks the fact that plenty of 
code (and mathematics) is being done behind the 
scenes and therefore invisible to the student.

%tor_of_z_cspline
% Evaluates numeric integral of 
tor(z) using cubic cpline fit
function [z,tor]  =  tor_of_z_
cspline(zminus,zplus, Ni, xmax)
dz  =  0.01;
z  =  linspace(zminus  +  dz, zplus - dz, 
Ni);
f  =  1./(xmax  +  one - exp(-z) - z);
tor  =  integrator(z, f, 0, z);

MATLAB has several in-built functions to 
achieve integration via cubic splines, and the meth-
ods are readily applied using the code described 
in Hanselman & Littlefield’s Mastering MATAB. 
[10]. In the latter, spline coefficients associated 
with each data point in {x, y} are used to deter-
mine the integral or differential of the spline, since 
this can be achieved trivially for a cubic.

A cubic spline itself, illustrated in figure 20,  
is a set of piecewise cubic curve segments, 
defined to pass through a ‘buffer’ of contigu-
ous data points, such that the curves and their 
first derivatives are continuous at the boundaries 
between the segments. Splines also require a 
boundary condition relating to the second deriva-
tives at the ends of the spline. A natural spline 
sets the second derivatives to be zero at these 
points [9] pp 116.

%Fontsize for graphs
fsize  =  22;

%Define x,y coordinates
N  =  20; x  =  linspace(0, 2*pi,N);
y  =  5*sin(4*x)  +  rand(size(x));

%Define spline interpolation
xx  =  linspace(0, 2*pi,1000);
yy  =  interp1(x,y,xx, 'spline');

%Plot spline and print a 300dpi PNG 
file
plot(xx,yy,'b',x,y,'r+', 
'markersize',...
18,'linewidth',2);
set(gca,'fontsize',fsize); grid on; 
axis tight
xlabel('x','fontsize',fsize); 
ylabel('y','fontsize',fsize);
title('Cubic spline interpolation 
demo','fontsize',fsize);
print(gcf,'cspline demo.
png','-dpng','-r300');

0

−4

−2

0

2

4

Cubic spline interpolation demo

1 2 3 4 5 6
x

y
Figure 20. Demonstration of interpolation via cubic 
splines using MATLAB. The fitting of a piecewise 
cubic (with continuous first derivatives between cubics) 
is not just useful for smoothing data. The cubics can 
also be readily differentiated or integrated, and hence 
enable a calculus method to be applied to a set of x, y 
data points. The code to generate the graph above is:
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