Journal Pre-proof

Emergence of genomic diversity and recurrent mutations in SARS-CoV-2

Lucy van Dorp, Mislav Acman, Damien Richard, Liam P. Shaw, Charlotte E. Ford, Louise Ormond, Christopher J. Owen, Juanita Pang, Cedric C.S. Tan, Florencia A.T. Boshier, Arturo Torres
 Ortiz, François Balloux

PII:
DOI:
Reference:

To appear in: Infection, Genetics and Evolution

Received date: 24 April 2020
Revised date: $\quad 30$ April 2020
Accepted date: 2 May 2020

Please cite this article as: L. van Dorp, M. Acman, D. Richard, et al., Emergence of genomic diversity and recurrent mutations in SARS-CoV-2, Infection, Genetics and Evolution (2019), https://doi.org/10.1016/j.meegid.2020.104351

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
© 2019 Published by Elsevier.

Emergence of genomic diversity and recurrent mutations in SARS-CoV-2

Lucy van Dorp ${ }^{1+}$, Mislav Acman ${ }^{1 *}$, Damien Richard ${ }^{2,3 *}$, Liam P. Shaw ${ }^{4 *}$, Charlotte E. Ford ${ }^{1}$, Louise Ormond ${ }^{1}$, Christopher J. Owen ${ }^{1}$, Juanita Pang ${ }^{1,5}$, Cedric CS. Tan¹, Florencia AT. Boshier ${ }^{5}$, Arturo Torres Ortiz ${ }^{1,6}$, François Balloux ${ }^{1+}$
${ }^{1}$ UCL Genetics Institute, University College London, London WC1E 6BT, UK
${ }^{2}$ Cirad, UMR PVBMT, F-97410 St Pierre, Réunion, France
${ }^{3}$ Université de la Réunion, UMR PVBMT, F-97490 St Denis, Réunion, France
${ }^{4}$ Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
${ }^{5}$ Division of Infection and Immunity, University College London, I ondon, WC1E 6BT, UK
${ }^{6}$ Department of Infectious Disease, Imperial College, London, W2 + NY, UK
+ Co-corresponding authors
* Equal contribution

Keywords

Betacoronaviridae; Homoplasies; Mutation; Phylogent ics

Abstract

(291/300 words)

SARS-CoV-2 is a SARS-like coronavirus of I'ке, ' zu notic origin first identified in December 2019 in Wuhan, the capital of China's Hubei pr »i, сce. The virus has since spread globally, resulting in the currently ongoing COVID-19 pandemic. $7_{1.2}$ first whole genome sequence was published on January 5 2020, and thousands of genoı. as have been sequenced since this date. This resource allows unprecedented insights into $\mathrm{hf} r^{\circ}>$ st demography of SARS-CoV-2 but also monitoring of how the virus is adapting to its r ve' 'uman host, providing information to direct drug and vaccine design. We curated a < 7 taset of 7666 public genome assemblies and analysed the emergence of genomic divers, vover time. Our results are in line with previous estimates and point to all sequences sharing ' cummon ancestor towards the end of 2019, supporting this as the period when SARS-CoV-? i., mped into its human host. Due to extensive transmission, the genetic diversity of the viru: in several countries recapitulates a large fraction of its worldwide genetic diversity. We deıufy regions of the SARS-CoV-2 genome that have remained largely invariant to date, and ntl ers that have already accumulated diversity. By focusing on mutations which have emerged independently multiple times (homoplasies), we identify 198 filtered recurrent mutations in the SARS-CoV-2 genome. Nearly 80% of the recurrent mutations produced non-synonymous changes at the protein level, suggesting possible ongoing adaptation of SARS-CoV-2. Three sites in Orf1ab in the regions encoding Nsp6, Nsp11, Nsp13, and one in the Spike protein are characterised by a particularly large number of recurrent mutations (>15 events) which may signpost convergent evolution and are of particular interest in the context of adaptation of SARS-CoV-2 to the human host. We additionally provide an interactive userfriendly web-application to query the alignment of the 7666 SARS-CoV-2 genomes.

1 Introduction

On December 31 2019, China notified the World Health Organisation (WHO) about a cluster of pneumonia cases of unknown aetiology in Wuhan, the capital of the Hubei Province. The initial evidence was suggestive of the outbreak being associated with a seafood market in Wuhan, which was closed on January 1 2020. The aetiological agent was characterised as a SARS-like betacoronavirus, later named SARS-CoV-2, and the first whole genome sequence (Wuhan-HU1) was deposited on NCBI Genbank on January 52020 (1). Human-to-human transmission was confirmed on January 14 2020, by which time SARS-CoV-2 had already spread to many countries throughout the world. Further extensive global transmission led to the WHO declaring COVID19 as a pandemic on March 112020.

Betacoronaviridae comprise a large number of lineages that are found in a wide range of mammals and birds (2), including the other human zoonotic patr ogens SARS-CoV-1 and MERSCOV. The propensity of Betacoronaviridiae to undergo frequent hus 'iumps supports SARS-CoV2 also being of zoonotic origin. To date, the genetically clo ess 'nown lineage is found in horseshoe bats (BatCoV RaTG13) (3). However, this lineage shar ${ }^{-r}{ }^{-} \% \%$ identity with SARS-CoV2 , which is not sufficiently high to implicate it as the immed, fte o 1 cestor of SARS-CoV-2 (2). The zoonotic source of the virus remains unidentified at the c' te or writing (April 23 2020).

The analysis of genetic sequence data from pathogens ı inr easingly recognised as an important tool in infectious disease epidemiology (4, 5). Ge: etic eequence data sheds light on key epidemiological parameters such as doubling tir e ff an outbreak/epidemic, reconstruction of transmission routes and the identification ot rossible sources and animal reservoirs. Additionally, whole-genome sequence atc ca. inform drug and vaccine design. Indeed, genomic data can be used to identify p^{+1} 'ogen genes interacting with the host and allows characterization of the more evolutinnary cu. strained regions of a pathogen genome, which should be preferentially targeted to avo., rapid drug and vaccine escape mutants.

There are thousands of global SAFこ Ccı 2 whole-genome sequences available on the rapid data sharing service hosted by the Glodal Initiative on Sharing All Influenza Data (GISAID; https://www.epicov.org) (6, 7, The extraordinary availability of genomic data during the COVID19 pandemic has been made p, ssible thanks to a tremendous effort by hundreds of researchers globally depositing SARS-ro، ? assemblies (Table S1) and the proliferation of close to real time data visualisation and a maly: s tools including NextStrain (https://nextstrain.org) and CoV-GLUE (http://cov-glue.cvr.gı. $\exists \mathrm{c} . \mathrm{uk}$).

In this work we use this data to analyse the genomic diversity that has emerged in the global population of SARS-CoV-2 since the beginning of the COVID-19 pandemic, based on a download of 7710 assemblies. We focus in particular on mutations that have emerged independently multiple times (homoplasies) as these are likely candidates for ongoing adaptation of SARS-CoV2 to its novel human host. After filtering, we characterise homoplasies at 198 sites in the SARS-CoV-2 genome. We identify a strong signal of recurrent mutation at nucleotide position 11083 (Codon 3606 Orf1a), together with two further sites in Orf1ab encoding the non-structural proteins Nsp11 and Nsp13. These, together with a mutation in the Spike protein (21575, Codon 5), comprise the strongest putative regions under selection in our dataset.

The current distribution of genomic diversity as well as ongoing allele frequency changes both between isolates and along the SARS-CoV-2 genome are publicly available as an open access and interactive web-resource available here:
https://macman123.shinyapps.io/ugi-scov2-alignment-screen/.

2 Material and methods

2.1 Data acquisition

7710 SARS-CoV-2 assemblies flagged as "complete (>29,000bp)", "high coverage only", "low coverage excl" were downloaded from the GISAID Initiative EpiCoV platform as of April 192020 (11:30 GMT). A full acknowledgements table of those labs which generated and uploaded data is provided in Table S1. Filtering was performed on the downloaded assemblies to exclude those deriving from animals (bat, pangolin), those with more than 1% missing sites, and otherwise spurious assemblies as also listed by nCov-GLUE (http://cov-glue.cvr.gla.ac.uk/\#/excludedSeqs). This left a final dataset of 7666 assemblies for downstream analysis. Sequence metadata was obtained from the NextStrain Github repository (https://github.com/nextstrain/ncov/tree/master/data). While results presented here predominately focus on an analysis of the available assemblies as of April 19 2020, equivalent analyses were performed daily from March 24 2020. This allowe'! tracking of the emergence of genomic variants in public sequence data as assemblies were uploa'ed during the course of the pandemic.

2.2. Multi-sequence alignment and maximum likelihood tret

Assemblies were aligned against the Wuhan-Hu-1 reterence genome (NC_045512.2, EPI_ISL_402125) using MAFFT (8) implemented via thr ra, ia phylodynamic alignment pipeline provided by Augur (github.com/nextstrain/augur). Site. in ihe first 130bp and last 50bp of the alignment were masked, as were positions 18529, 2984之, 29851 and 29853, following the protocol also advocated by NextStrain and to ac co $1 r+$ for the fact many putatively artefactual SNPs are located at the beginning and ends oi uie alignment. Resulting alignments were manually inspected in UGene (http:/ ug ne., et). Subsequently a maximum likelihood phylogenetic tree was built using the $A u_{5}$ " tree implementation selecting RAxML as the treebuilding method (9). The resulting nhyloger.y was viewed and annotated using ggtree (10) (Figures S1-S2). Throughout, site numbe.ing and genome structure are given using Wuhan-Hu1 (NC_045512.2) as reference.

2.3 Phylogenetic dating

The maximum likelihood phyluceneric tree was tested for the presence of significant molecular evolution over the sampling p - riod using the roottotip() function provided in BactDating (11). After confirmation of a sionı:- nt regression following 1000 random permutations of sampling dates (Figure S3), temk गral :alibration of the phylogeny was performed using TreeDater (12), assuming a strict clocn muuel of evolution, as we do not expect a significant difference in rate variation across lineages at these time scales (Figure S4). To obtain confidence intervals around each temporal point estimate we conducted a parametric bootstrapping analysis with 25 replicates, keeping the tree topology constant while generating new branch length estimates using a Poisson distribution and running the same model in TreeDater (12). We also evaluated all currently available estimates for tip-calibration estimates of the tMRCA of SARS-CoV-2 together with rate estimates for other closely related betacoronaviruses (Table 1, Table S2).

2.4 Maximum parsimony tree and homoplasy screen

In parallel a Maximum Parsimony tree was built using the fast tree inference and bootstrap approximation offered by MPBoot (13). MPBoot was run on the alignment to reconstruct the Maximum Parsimony tree and to assess branch support following 1000 replicates (-bb 1000). The resulting Maximum Parsimony treefile was used, together with the input alignment, to rapidly identify recurrent mutations (homoplasies) using HomoplasyFinder (14).

HomoplasyFinder provides, for each site, the minimum number of state changes required on the tree to explain the observed character states at the tips, as described by Fitch (15), and
measured via the site specific consistency index. For this analysis all ambiguous sites in the alignment were set to ' N '. To assess whether any particular Open Reading Frame (ORF) showed evidence of more homoplasies than expected given the length of the ORF, an empirical distribution was obtained by sampling, with replacement, equivalent length windows and recording the number of homoplasies detected (Table S3).

HomoplasyFinder identified 1132 homoplasies (1042 excluding masked sites), which were distributed over the SARS-CoV-2 genome (Figure S5, Table S4). Of these, 40 sites have a derived allele at $>1 \%$ of the total isolates. However, homoplasies can arise due to convergent evolution (putatively adaptive), recombination, or via errors during the processing of sequence data. The latter is particularly problematic here due to the mix of technologies and methods employed by different contributing research groups. We therefore filtered identified homoplasies using a set of thresholds attempting to circumvent this problem (filtering scripts and figures are available at https://github.com/liampshaw/CoV-homoplasy-filtering).

In summary, for each homoplasy we computed the proportior of , olates with the homoplasy $p_{n n}$ where the nearest neighbouring isolate in the phyloonn, -.so carried the homoplasy (excluding identical sequences). This metric ranges bet veer $p_{n n}=0$ (all isolates with the homoplasy present as singletons) and $p_{n n}=1$ (no singletc is i.e. clustering of isolates with the homoplasy in the phylogeny). We reasoned that artefar cua' stquencing homoplasies would tend to show up as singletons, so excluded all homoplasies $v^{i t h} \rho_{n n}<0.1$ from further analysis.

To obtain a set of high confidence homoplasie , ve then used the following criteria: $\geq 0.1 \%$ isolates in the alignment share the homoplas! (equivalent to >8 isolates), $p_{n n}>0.1$, and derived allele found in strains sequenced from >1, rig natı..g lab and >1 submitting lab. We also required the proportion of isolates where the hoı, - دlasic site was in close proximity to an ambiguous base ($\pm 5 \mathrm{bp}$) to be zero. The app!ication ci^{i} these various filters reduced the number of homoplasies to 198 (Table S5). We aıへ plotted the distributions of cophenetic distances between isolates carrying each hon or $\mathrm{k}^{\boldsymbol{\prime}}$ / compared to the distribution for all isolates (Figure S6), and inspected the distributior. .fá". dentified homoplasies in the phylogenies from our own analyses and on the phylogentir visualisation platform provided by NextStrain. Finally, we examined whether ambiguous 'rases were seen more often at homoplasic sites than at random bases(excluding masked sites), which was not the case (Figure S7).

To further validate the I omc plasy detection method applied to the alignment of the 7666 SARS-CoV-2 genome assem ${ }^{\prime}{ }^{\text {ies }}$, we took advantage of the genome sequences for which raw reads were available on the short Read Archive (SRA). A variant calling pipeline (available at https://github.com/DamienFr/CoV-homoplasy) was used to obtain high-confidence alignments for the 348 (out of 889 as of April 19 2020) SRA genomic datasets both meeting our quality criterions and matching GISAID assemblies. The topology of the Maximum Likelihood phylogeny of these 348 samples was compared to that of the corresponding samples from the GISAID genome assemblies using a Mantel test and the Phytools R package (16) (Figures S8-S9, see Supplementary text).

As discussed, the GISAID dataset comprises assemblies of variable quality, potentially impairing the detection of genuine homoplasies and/or leading to false positive SNPs due to sequencing error or spurious allele assignment during the production of the de novo assembly from raw sequence reads. Therefore, to further assess the detection of homoplasies, we applied HomoplasyFinder to the two datasets comprising the same 348 strains (GISAID and SRA) (Table S6). We detected 19 homoplasies on the dataset originating from the SRA, and 21 on the dataset originating from GISAID assemblies. Of these, 19 were detected in both datasets (Table S7). Using the same filters as for the main dataset (with the exception of the $\geq 0.1 \%$ frequency set to
$\geq 1 \%$), 10 and 11 homoplasies were kept in the SRA dataset and in the GISAID dataset, respectively. Nine sites were detected in both datasets. For sites which failed the filtering thresholds, this was largely due to the low number of studied accessions, which increases the probability of an isolated strain displaying a homoplasy e.g. if $\mathrm{n}=2$ isolates have a homoplasy, by definition they cannot be nearest neighbours, so $p_{n n}=0$.

2.5 Annotation of variant and homoplasic sites

The alignment was translated to amino acid sequences using SeaView V4 (17). Sites were identified as synonymous or non-synonymous and amino acid changes corresponding to these mutations were retrieved via multiple sequence alignment. We assessed the change in hydrophobicity and charge of amino acid residues arising due to homoplastic non-synonymous mutations using the hydrophobicity scale proposed by Janin (18). The ten most hydrophobic residues on this scale were considered hydrophobic and the rest as hydrophilic. In addition, amino acid residues were either classified as positively charged negatively charged or neutral at pH 7 . The charge of each residue can either increase, decrease ~" remain the same (neutral mutation) due to mutation (Figure S10).

2.6 Comparison with SARS-CoV-1 and MERS-CoV

SARS-CoV-1 and MERS-CoV are both zoonotic pathciens related to SARS-CoV-2, which underwent a host jump into the human host previou sy. We investigated whether the major homoplasies we detect in SARS-CoV-2 affect sites whic, alr \jmath underwent recurrent mutations in these related viruses as these adapted to their huma.ı hos. All Coronaviridae assemblies were downloaded (NCBI TaxID:11118) on 8th of Apri 2500 and human associated MERS-CoV and SARS-CoV-1 assemblies extracted. This gave λ tota: of 15 assemblies for SARS-CoV-1 and 255 assemblies for MERS-CoV. Following the an ? pı tocol (Augur align) as applied to SARS-CoV-2 assemblies, each species was aligned τ_{i} inst the respective RefSeq reference genomes: NC_004718.3 for SARS-CoV-1 and NC._019843.3 for MERS-CoV. This produced alignments of 29,751bp (187 SNPs) and 30,119bp (15४? SNPs) respectively.

MPBoot (13) was run on both se’. of \therefore.'gnments to reconstruct the maximum parsimony tree and to assess branch support i llowing 1000 replicates ($-b b 1000$). The resulting maximum parsimony treefiles were us'd, together with the input alignment, to rapidly identify homoplasies using Homoplasy, -inder (14). For SARS-CoV-1 we detected six homoplasies and for MERS-CoV we detected 25u h smoplasies (pre-filtering) (Figure S11-S12). The distribution of homoplasies was asses ed ı ミlative to the Genbank annotation files and in the context of the high confidence homu, lasıes that we detect in SARS-CoV-2.

3 Results

3.1 Emergence of SARS-CoV-2 genomic diversity over time

The 7666 SARS-CoV-2 genomes offer an excellent geographical and temporal coverage of the COVID-19 pandemic (Figure 1a-b). The genomic diversity of the 7666 SARS-CoV-2 genomes is represented as Maximum Likelihood phylogenies in a radial (Figure 1c) and linear layout (Figure S1-S2). There is a robust temporal signal in the data, captured by a statistically significant correlation between sampling dates and 'root-to-tip' distances for the 7666 SARS-CoV-2 (Figure S3; $R^{2}=0.20, \mathrm{p}<0.001$). Such positive association between sampling time and evolution is expected to arise in the presence of measurable evolution over the timeframe over which the genetic data was collected. Specifically, more recently sampled strains have accumulated additional mutations in their genome than older ones since their divergence from the Most Recent Common Ancestor (MRCA, root of the tree).

The origin of the regression between sampling dates and 'rr ot-ı-tip' distances (Figure S3) provides a cursory point estimate for the time to the MRCA (†ル. ${ }^{\circ} r_{\text {_A }}$) around late 2019. Using TreeDater (12), we observe an estimated tMRCA, which cor espi nds to the start of the COVID19 epidemic, of 6 October 2019-11 December 2019 (95? Cls) (Figure S4). These dates for the start of the epidemic are in broad agreement with $p^{\prime} \mathrm{ev}^{\prime} \mathrm{V}_{\mathrm{u}}$ estimates performed on smaller subsets of the COVID-19 genomic data using various cu $m n$ ıtational methods (Table 1), though they should still be taken with some caution. Indeed, '.ne stıer size of the dataset precludes the use of some of the more sophisticated inference m't' ods available.

The SARS-CoV-2 global population has acr $_$m late λ only moderate genetic diversity at this stage of the COVID-19 pandemic with an averac pairwise difference of 9.6 SNPs between any two genomes, providing further support for a relaiively recent common ancestor. We estimated a
 nucleotides/genome/year ($\mathrm{Cl}: 4 \times 1 \mathrm{r}^{-4}-7 \times 10^{-4}$) obtained following time calibration of the maximum likelihood phylogeny. - This ate is largely unremarkable for an RNA virus (19, 20), despite Coronaviridae having t_{1}. 2 unusual capacity amongst viruses of proofreading during nucleotide replication, thanks n the non-structural protein nsp14 exonuclease, which excises erroneous nucleotides insertec' hy their main RNA polymerase nsp12 (21, 22).

3.2 Everything is every vhet ?

Some of the major cladf; in the maximum likelihood phylogeny (Figure 1c and Figure S1) are formed predominantly by strains sampled from the same continent. However, this likely represents a temporal rather than a geographic signal. Indeed, the earliest available strains were collected in Asia, where the COVID-19 pandemic started, followed by extensive genome sequencing efforts first in Europe and then in the USA.

The SARS-CoV-2 genomic diversity found in most countries (with sufficient sequences) essentially recapitulates the global diversity of COVID-19 from the 7666-genome dataset. Figure 2 highlights the proportion of the global genetic diversity found in the UK, the USA, Iceland and China. In the UK, the USA and Iceland, the majority of the global genetic diversity of SARS-CoV2 is recapitulated, with representatives of all major clades present in each of the countries (Figure 2A-C). The same is true for other countries such as Australia (Figure S2a).

This genetic diversity of SARS-CoV-2 populations circulating in different countries points to each of these local epidemics having been seeded by a large number of independent introductions of the virus. The main exception to this pattern is China, the source of the initial outbreak, where
only a fraction of the global diversity is present (Figure 2d). This is also to an extent the case for Italy (Figure S2b), which was an early focus of the COVID-19 pandemic. However, this global dataset includes only 35 SARS-CoV-2 genomes from Italy, so some of the genetic diversity of SARS-CoV-2 strains in circulation likely remains unsampled. The genomic diversity of the global SARS-CoV-2 population being recapitulated in multiple countries points to extensive worldwide transmission of COVID-19, likely from extremely early on in the pandemic.

3.3 Genetic diversity along the genome alignment and recurrent mutations (homoplasies)

The SARS-CoV-2 alignment can be considered as broken into a large two-part Open Reading Frame (ORF) encoding non-structural proteins, four structure proteins: spike (S), envelope (E), membrane (M) and nucleocapsid (N), and a set of small accessory factors (Figure 3a). There is variation in genetic diversity across the alignment, with polymorphisms often found in neighbouring clusters (Figure S5). A simple permutation resamplirg approach suggests that both Orf3a and N exhibit SNPs which fall in the $95^{\text {th }}$ percentile of the erro.-ical distribution (Table S3). However, not all of these sites can be confirmed as true varia nt $_$ositions, due to the lack of accompanying sequence read data. However, we closely insnec: \sim, those sites that appear to have arisen multiple times following a maximum parsimont tret building step. We identified a large number of putative homoplasies ($\mathrm{n}=1042$ excluding nasкed regions), which were filtered to a high confidence cohort of 198 positions (see Metr Ju_!.

These 198 positions in the SARS-CoV-2 genome aligr.nenı 〔 0.67% of all sites) were associated with 290 amino acid changes across all 7666 se'ic nes. Of these amino acid changes, 232 comprised non-synonymous and 58 compriser syı, unymous mutations. Two non-synonymous mutations involved the introduction or rer. 10 , al oi stop codons were found (*13402Y, *26152G). 53 of the remaining 101 non-synonymou. r.ıutations involved neutral hydrophobicity changes (Figure S10a). In addition, 79 of the rnmaining 101 non-synonymous mutations involved neutral changes (Figure S10b). Both Orf1ab anci N had a four-fold higher frequency of hydrophilic \rightarrow hydrophobic mutations than hydrc oh $\mathrm{s}_{\mathrm{n}} \mathrm{i}^{2} \rightarrow \rightarrow$ hydrophilic mutations (Figure S10). In addition, neutral hydrophobic changes wer_ - ϵ : in favoured in the S protein. Lastly, 87 of the remaining 110 non-synonymous mutations nvolved neutral charge changes.

Amongst the strongest filterea 'romoplasic sites (>15 change points on the tree), three are found within Orf1ab (nucleotido $\boldsymbol{\mu}^{*}$ cions $11083,13402,16887$) and S (21575). We exemplify the strongest signal and oו r ap roach using position 11083 in Figure 3 and provide a full list of homoplasic sites, botı, fillered and unfiltered, in Tables S4-5. The strongest hit in terms of the inferred minimum numt ar of changes required (Figure 3b-c) at Orf1ab (11083, Codon 3606) falls over a region encoding the non-structural protein, Nsp6, and is also observed in our analyses of the SRA dataset (Table S7).

We note that some of the hits also overlap with positions identified as putatively under selection using other approaches (http://virological.org/t/selection-analysis-of-gisaid-sars-cov-2data/448/3, accessed April 23 2020), with Orf1ab consistently identified as a region comprising several candidates for non-neutral evolution. Orf1ab is an orthologous gene with other humanassociated betacoronaviruses, in particular SARS-CoV-1 and MERS-CoV which both underwent host jumps into humans from likely bat reservoirs (23, 24). We performed an equivalent analysis on human-associated virus assemblies available on the NCBI Virus platform. We identified six putative homoplasic sites within SARS-CoV-1, two occurring within the 3c-like proteinase just upstream of Nsp6 $(10384,10793)$ and a further two homoplasies within Orf1ab at Nsp9 and Nsp13 (Figure S11). In addition, one homoplasy was identified in the spike protein and one in the membrane protein ORFs.

For MERS-CoV, multiple unfiltered homoplasies were detected, consistent with previous observations of high recombination in this species (25), though only one invoked more than a minimum number of 10 changes on the maximum parsimony tree (Figure S12). This corresponded to a further homoplasy identified in Orf1ab Nsp6(position 11631). It is of note that this genomic region coincides with the strongest homoplasy in SARS-CoV-2 which also occurs in the Nsp6 encoding region of Orf1ab. Codon 3606 of Orf1ab shares a leucine residue in MERS-CoV and SARS-CoV-2, though a valine in SARS-CoV. The exact role of these and other homoplasic mutations in human associated betacoronaviruses represents an important area of future work, although it appears that the Orf1ab region may exhibit multiple putatively adapted variants across human betacoronavirus lineages.

The genome alignment of the 7666 SARS-CoV-2 genomes can be queried through an open access, interactive web-application (https://macman123.shinyapps.io/ugi-scov2-alignmentscreen/). It provides users with information on every SNP and ho noplasy detected across our global SARS-CoV-2 alignment and allows visual inspection both wia. n the sequence alignment and across the maximum likelihood tree phylogeny. Figure 3 ill' stra ${ }^{\text {tes }}$ some of the functionalities of the web application using position 11083 in the ${ }^{\prime \prime}$:gnment as an example. This particular homoplasy was observed 1078 times across : he g nomes and requires a minimum of 37 character-site changes to become congru nt with the observed SARS-CoV-2 phylogeny (Figure 3a and 3b).

4 Discussion

Pandemics have been affecting humanity for millennia (26). Over the last century alone, several global epidemics have claimed millions of lives, including the 1957/58 influenza A (H2N2) pandemic, the sixth (1899-1923) and seventh 'El Tor' cholera pandemic (1961-1975), as well as the HIV/AIDS pandemic (1981-today). COVID-19 acts as an unwelcome reminder of the major threat that infectious diseases represent in terms of deaths and disruption.

One positive aspect of the current situation, relative to previous pandemics, is the unprecedented availability of scientific and technological means to face COVID-19. In particular, the rapid development of drugs and vaccines has already begun. Modern drug and vaccine development are largely based on genetic engineering and an understanding of host-pathogen interactions at a molecular level. The mobilisation to address the COVID-19 pandemic by scientists worldwide has been remarkable. This includes the feat of the global scientific community who has already produced and publicly shared well ovei ${ }^{11,000}$ complete SARS-CoV2 genome sequences at the time of writing (April 23 2020), whi h we have used here with gratitude. Further initatives in the United Kingdom (https://wwın.`.consortium.uk/data/) have already to date produced over 10,000 genomes, some of whi h overlap with those already available on GISAID.

To put these numbers of SARS-CoV-2 genomes in conı.xt it is interesting to consider parallels with the 2009 H1N1pdm influenza pandemic, the first «pidt. nic for which genetic sequence data was generated in near-real time $(27,28)$. The gt netic data available at the time looks staggeringly small in comparison to the amoun thai nas already been generated for SARS-CoV2 during the early stages of the COVID-1‘p، ndt.nic. For example, Fraser et al. considered 11 partial hemagglutinin gene sequences tw ${ }^{r}$. onths after the WHO had declared 2009 H1N1pdm influenza a pandemic (27).

This unprecedented genomic reso $\mathrm{Ir}^{\prime} \in$ has already provided strong conclusions about the pandemic. For example, analyses ' \sim ' n....tiple independent groups place the start of the COVID19 pandemic towards the end $n_{i}{ }^{\top} 019$ (Table 1). This rules out any scenario that assumes SARS-CoV-2 may have been in circ lation long before it was identified, and hence have already infected large proportions of t_{1} • population.

Extensive genomic resc urce; for SARS-CoV-1 should in principle also be key to informing on optimal drug and vaccı. © uesign, particularly when coupled with knowledge of human proteome and immune interactior; (29). Ideally, drugs and vaccines should target relatively invariant, strongly constrained regions of the SARS-CoV-2 genome, to avoid drug resistance and vaccine evasion. Therefore ongoing monitoring of genomic changes in the virus will be essential to gain a better understanding of fundamental host-pathogen interactions that can inform drug and vaccine design.

As most (but not all) pathogens capable of causing epidemic at a pandemic scale, SARS-CoV-2 is in all likelihood of zoonotic origin. This implies that SARS-CoV-2 may not be fine-tuned to its novel human host. However, it is near-impossible to predict future trajectories for the virulence and transmissibility of horizontally transmitted pathogens (30). It is also possible that the population of SARS-CoV-2 will evolve into different lineages characterised by variable levels of virulence and transmissibility. However, despite existing phylogenetic structure (31), it is important to stress that there is no evidence for the evolution of distinct phenotypes in SARS-CoV-2 at this stage.

The vast majority of mutations observed so far in SARS-CoV-2 circulating in humans are likely neutral $(32,33)$ or even deleterious (34). Homoplasies, such as those we detect here, can arise by product of neutral evolution or as a result of ongoing selection. Of the 198 homoplasies we detect (after applying stringent filters), some proportion are very likely genuine targets of positive selection which signpost to ongoing adaptation of SARS-CoV-2 to its new human host. Indeed, we do observe an enrichment for non-synonymous changes (80\%) in our filtered sites. As such, our provided list (Table S5) contains candidates for mutations which may affect the phenotype of SARS-CoV-2 and virus-host interactions and which require ongoing monitoring. Conversely, the finding that 78% of the homoplasic mutations involve no polarity change could still reflect strong evolutionary constraints at these positions $(35,36)$. The remaining non-neutral changes to amino acid properties at homoplasic sites may be enriched in candidates for functionally relevant adaptation and could warrant further experimental investigation.

One of the strongest homoplasies lies at site 11083 in the SARS-CoV-2 genome in a region of Orf1a encoding Nsp6. This site passed our stringent filtering cirteria ?nd was also present in our analysis of the SRA dataset (Table S7). Interestingly, this region c ver. - ps a putative immunogenic peptide predicted to result in both CD4+ and CD8+ T-rol, wactivity (37). More minor homoplasies amongst our top candidates, identified with 1 Oı "3a (Table S5), also map to a predicted CD4 T cell epitope. While the immune respons to sARS-CoV-2 is poorly understood at this point, key roles for CD4 T cells, which activa.e : cells for antibody production, and cytotoxic CD8 T cells, which kill virus-infected cells, a. \mathfrak{k} ıown to be important in mediating clearance in respiratory viral infections (38). Of ncte, wa also identify a strong recurrent mutation in nucleotide position 21575, correspc nd.n ; to the SARS-CoV-2 spike protein (codon 5). While the spike protein is the known medi to, ur host-cell entry, our detected homoplasy falls outside of the N-terminal and recept رr k 'ndı g domains.

Our analyses presented here provide 7 snapsrıst in time of a rapidly changing situation based on available data. Although we have atterı., nted to filter out homoplasies caused by sequencing error with stringent thresholds, anc' $a^{\prime} \dot{i}$ 'ised available short-read data to validate a subset of homoplasic sites in a smaller data' ${ }^{+} \subset .$. analysis nevertheless remains reliant on the underlying quality of the publicly available . ssemblies. As such, it is possible that some results might be artefactual, and further inves igation will be warranted as additional raw sequencing data becomes available.

However, given the cru ial ir iportance of identifying potential signatures of adaptation in SARS-CoV-2 for guiding ong ing development of vaccines and treatments, we have suggested what we believe to be a plaı sible approach and initial list in order to facilitate future work and interpretation of the observed patterns. More data continues to be made available, which will allow ongoing investigation by ourselves and others. We believe it is important to continue to monitor SARS-CoV-2 evolution in this way and to make the results available to the scientific community. In this context, we hope that the interactive web-application we provide will help identify key recurrent mutations in SARS-CoV-2 as they emerge and spread.

Acknowledgments and Funding

L.v.D and F.B. acknowledge financial support from the Newton Fund UK-China NSFC initiative (grant MR/P007597/1) and the BBSRC (equipment grant BB/R01356X/1). Computational analyses were performed on UCL Computer Science cluster and the South Green bioinformatics platform hosted on the CIRAD HPC cluster. We thank Jaspal Puri for insights and assistance on the development of the alignment visualisation tool and Nicholas McGranahan and Rachel Rosenthal for their comments on the manuscript. We additionally wish to acknowledge the very large number of scientists in originating and submitting labs who have readily made available SARS-CoV-2 assemblies to the research community.

Author Contributions

L.v.D., and F.B. conceived and designed the study; L.v.D., M.A, D. ? L.P.S., C.E.F., L.O., C.J.O., J.P., C.C.S.T., F.A.T.B., and A.T.O analysed data and performed compuntional analyses; L.v.D., and F.B. wrote the paper with inputs from all co-authors.

Competing Interests

The authors have no competing interests to declare.

References

1. Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265-+.
2. Shaw LP, Wang AD, Dylus D, Meier M, Pogacnik G, Dessimoz C, et al. The phylogenetic range of bacterial and viral pathogens of vertebrates. bioRxiv. 2020:670315.
3. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270-+.
4. Rambaut A, Pybus OG, Nelson MI, Viboud C, Taubenberger JK, Holmes EC. The genomic and epidemiological dynamics of human influenza A virus. Nature. 2008;453(7195):615-U2.
5. Grenfell BT, Pybus OG, Gog JR, Wood JLN, Daly J. 1 , Mumford JA, et al. Unifying the Epidemiological and Evolutionary Dynamics of $\mathrm{Fa}{ }^{\circ}$ 'hogens. Science. 2004;303(5656):327-32.
6. Elbe S, Buckland-Merrett G. Data, disease and dipi macy: GISAID's innovative contribution to global health. Glob Chall. 2017;1(1):33-16
7. Shu YL, McCauley J. GISAID: Global initiativi on sharing all influenza data from vision to reality. Eurosurveillance. 2017;22(13):" 4.
8. Katoh K, Standley DM. MAFFT Multiple Se, 'ence Alignment Software Version 7: Improvements in Performance and \sim ability. Molecular Biology and Evolution. 2013;30(4):772-80.
9. Kozlov AM, Darriba D, Flouri T, Vu -el B, Stamatakis A. RAxML-NG: a fast, scalable and user-friendly tool for ma. im m likelihood phylogenetic inference. Bioinformatics. 2019;35(21):4453-5.
10. Yu GC, Smith DK, Zhu HC, Fuan Y, Lam TTY. GGTREE: an R package for visualization and annotation of pr yenetic trees with their covariates and other associated data. Methods in Ecnlog v nd Evolution. 2017;8(1):28-36.
11. Didelot X, Croucher I ${ }^{\text {T}}$, Beatley SD, Harris SR, Wilson DJ. Bayesian inference of ancestral dates on bacteri 1 phylogenetic trees. Nucleic Acids Research.
2018;46(22):11.
12. Volz EM, Frost SLW Scalable relaxed clock phylogenetic dating. Virus Evol. 2017;3(2):9.
13. Hoang DT, $\because \because \because 亡 i=$, Flouri T, Stamatakis A, von Haeseler A, Minh BQ. MPBoot: fast phyloger etic maximum parsimony tree inference and bootstrap approximation. BMC Evol Biol. 2018;18:11.
14. Crispell J, Balaz D, Gordon SV. HomoplasyFinder: a simple tool to identify homoplasies on a phylogeny. Microbial Genomics. 2019;5(1):10.
15. Fitch WM. Toward defining course of evolution - minimum change for a specific tree topology. Systematic Zoology. 1971;20(4):406-16.
16. Revell LJ. phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution. 2012;3(2):217-23.
17. Gouy M, Guindon S, Gascuel O. SeaView Version 4: A Multiplatform Graphical User Interface for Sequence Alignment and Phylogenetic Tree Building. Molecular Biology and Evolution. 2010;27(2):221-4.
18. Janin J. Surface and inside volumes in globular proteins. Nature.

1979;277(5696):491-2.
19. Domingo-Calap P, Schubert B, Joly M, Solis M, Untrau M, Carapito R, et al. An unusually high substitution rate in transplant-associated BK polyomavirus in vivo is further concentrated in HLA-C-bound viral peptides. Plos Pathogens. 2018;14(10):18. 20. Holmes EC, Dudas G, Rambaut A, Andersen KG. The evolution of Ebola virus: Insights from the 2013-2016 epidemic. Nature. 2016;538(7624):193-200.
21. Snijder EJ, Bredenbeek PJ, Dobbe JC, Thiel V, Ziebuhr J, Poon LLM, et al. Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J Mol Biol. 2003;331(5):991-1004.
22. Minskaia E, Hertzig T, Gorbalenya AE, Campanacci V, Cambillau C, Canard B, et al. Discovery of an RNA virus 3 '-> 5 ' exoribonuclease that is critically involved in coronavirus RNA synthesis. Proceedings of the National Academy of Sciences of the United States of America. 2006;103(13):5108-13.
23. Lau SKP, Woo PCY, Li KSM, Huang Y, Tsoi HW, Wong BHL, et al. Severe acute respiratory syndrome coronavirus-like virus in Chines. 'rorseshoe bats.
Proceedings of the National Academy of Sciences of the Unitea States of America. 2005;102(39):14040-5.
24. Memish ZA, Mishra N, Olival KJ, Fagbo SF, Kipur V, Epstein JH, et al. Middle East Respiratory Syndrome Coronavirus in Ba is, Sァıdi Arabia. Emerg Infect Dis. 2013;19(11):1819-23.
25. Dudas G, Rambaut A. MERS-CoV recomh natı on: implications about the reservoir and potential for adaptation. Virus Evol. 26. 6;2(1):11.
26. Balloux F, van Dorp L. Q\&A: What a e athogens, and what have they done to and for us? BMC Biol. 2017;15:6.
27. Fraser C, Donnelly CA, Cauche ... Z i $_{\text {a }}$ Hanage WP, Van Kerkhove MD, Hollingsworth TD, et al. Pandemic Pı ter ral of a Strain of Influenza A (H1N1) : Early Findings. Science. 2009:1557-61.
28. Smith GJD, Vijaykrishna D, ? ahl J, Lycett SJ, Worobey M, Pybus OG, et al. Origins and evolutionary genomi s fthe 2009 swine-origin H1N1 influenza A epidemic. Nature. 2009;459(7250): 1122 -U107.
29. Gordon DE, Jang GM, Bounaddou M, Xu J, Obernier K, O’Meara MJ, et al. A SARS-CoV-2-Human Prote: 1 -Prutein Interaction Map Reveals Drug Targets and Potential Drug-Repurposing. bıoRxiv. 2020:2020.03.22.002386.
30. Anderson RM, Ma, PM. Infectious Diseases of Humans. Dynamics and Control. Oxford: Oxff rd U'niversity Press; 1991.
31. Rambaut A, I' 'า 1 es EC, Hill V, O'Toole Á, McCrone J, Ruis C, et al. A dynamic nomenclature proposal for SARS-CoV-2 to assist genomic epidemiology. bioRxiv. 2020:2020.04.17.046086.
32. Cagliani R, Forni D, Clerici M, Sironi M. Computational inference of selection underlying the evolution of the novel coronavirus, SARS-CoV-2. Journal of Virology. 2020:JVI.00411-20.
33. Dearlove BL, Lewitus E, Bai H, Li Y, Reeves DB, Joyce MG, et al. A SARS-CoV-2 vaccine candidate would likely match all currently circulating strains. bioRxiv. 2020:2020.04.27.064774.
34. Nielsen R, Wang H, Pipes L. Synonymous mutations and the molecular evolution of SARS-Cov-2 origins. bioRxiv. 2020:2020.04.20.052019.
35. Hughes AL. Looking for Darwin in all the wrong places: the misguided quest for positive selection at the nucleotide sequence level. Heredity. 2007;99(4):364-73.
36. Yampolsky LY, Kondrashov FA, Kondrashov AS. Distribution of the strength of selection against amino acid replacements in human proteins. Human Molecular Genetics. 2005;14(21):3191-201.
37. Grifoni A, Sidney J, Zhang Y, Scheuermann RH, Peters B, Sette A. A Sequence Homology and Bioinformatic Approach Can Predict Candidate Targets for Immune Responses to SARS-CoV-2. Cell Host Microbe. 2020;27(4):671-80.e2.
38. Kohlmeier JE, Woodland DL. Immunity to Respiratory Viruses. Annu Rev Immunol. 2009;27:61-82.
39. Li XG, Wang W, Zhao XF, Zai JJ, Zhao Q, Li Y, et al. Transmission dynamics and evolutionary history of 2019-nCoV. J Med Virol. 2020;92(5):501-11.
40. Giovanetti M, Benvenuto D, Angeletti S, Ciccozzi M. The first two cases of 2019-nCoV in Italy: Where they come from? J Med Virol. 2020;92(5):518-21.
41. Lu J, Plessis Ld, Liu Z, Hill V, Kang M, Lin H, et al. Genomic epidemiology of SARS-CoV-2 in Guangdong Province, China. medRxiv. 2020:2020.04.01.20047076.

Figures and Tables

Figure 1. Global sequencing efforts have contribute ${ }^{\wedge} h$, gely to our understanding of the genomic diversity of SARS-CoV-2. a) Viral assemb'es a ailable from global regions as of 19/04/2020. b) Cumulative total of viral assembli 2 s 가 loaded to GISAID included in our analysis. c) Radial Maximum Likelihood phylogeny for 76ここ complete SARS-CoV-2 genomes. Colours represent continents where isolates wer - c. llec:ed. Green: Asia; Red: Europe; Purple: North America; Orange: Oceania; Dark blue: : nth America according to metadata annotations available on NextStrain (https://github.com/r.2xtstrain/ncov/tree/master/data).

Figure 2. Genomic diversit, of "ARSCoV-2 in the UK, USA, Iceland and China. Strains collected from all four countries are : ighlighted on the global phylogenetic tree. a) Strains from the UK shown in red. b) Stra:ns -r.lected in the USA shown in purple. c) Strains collected in Iceland shown in red. d) Strains ()llected in China shown in green. Regional colours match to the global phylogeny shown in Figure 1c.

Figure 3: Inspection of a major homoplastic site in Orf1ab of SARS-CoV-2 genome (position 11083). Panel A shows a color-coded schematic of the SARS-CoV-2 genome annotated as per NC_045512.2 and a plot of all po eri` homoplastic sites in Orf1ab measured as minimal number of character-state chans,_c a Maximum Parsimony tree (see Methods). Exemplar homoplasy (denoted with *) has : oen shown on the radial ML phylogenetic tree in panel B. Panel C shows the distribution of , حphenetic distances between isolates carrying the identified homoplasy (red) and the dist, hution for all isolates (grey), showing that isolates with the homoplasy tend to cluster $1,{ }^{\text {th}}$.e phylogeny. Equivalent figures for other filtered homoplasies are generated as part o the filtering method (see Methods).

Table 1．Estimates of SARS－CoV－2 time to most recent common ancestor（tMRCA）．BCI：Bayesian Credible Interval；HPD：Highest Posterior Density；CI： Confidence Interval．Asterix＊denotes non－peer reviewed estimate of tMRCA．＇N．＇denotes the number of whole genomes analysed．

Reference	N．	Substitution Rate（per site per year）	Estimated tMRCA	Method
Li et al． 2020 （39）	32	$\begin{aligned} & 1.0 \times 10-3(95 \% \text { BCI } 1.854 \times 10-4, \\ & 4.0 \times 10-3) \end{aligned}$	October 15， 2019 （95\％BCI May 2，201，｀January 17，2020）	Rate－informed strict clock model （BEAST v1．8．4）
Li et al． 2020 （39）	32	$\begin{aligned} & 1.8266 \times 10-3(95 \% \mathrm{BCI} 7.5813 \times \\ & 10-4,3.0883 \times 10-3) \end{aligned}$	December 6， 2019 （95\％BCI Nr ve． nı or ．6，2019；2 December 21，2019）	Rate－estimated relaxed clock model （BEAST v1．8．4）
Giovanetti et al． $2020 \text { (40) }$	54	$\begin{aligned} & 6.58 \times 10-3(95 \% \text { HPD } 5.2 \times 10-3 \text {, } \\ & 8.1 \times 10-3) \end{aligned}$	November 25， 2019 （9ヶ \％C September 28，2019； December 21， 2^{n+9} ）	Relaxed clock model（BEAST v1．10．4）
Hill \＆Rambaut $2020^{* 1}$	75	$\begin{aligned} & 0.92 \times 10-3(95 \% \text { HPD } 0.33 \times 10-3- \\ & 1.46 \times 10-3) \end{aligned}$	Nover＇ルt．2：2 ${ }^{10}$（95\％CI October 28，2019； Dece lbf．20，？019）	Unreported clock model（BEAST v1．7．0）
Hill \＆Rambaut 2020＊1	86	$\begin{aligned} & 0.80 \times 10-3(95 \% \text { HPD } 0.14 \times 10-3 \text {, } \\ & 1.31 \times 10-3) \end{aligned}$	Nu＇ember 17， 2019 （95\％CI August 27，2019； ＇－？c．mber 19，2019）	Unreported clock model（BEAST v1．7．0）
Hill \＆Rambaut $2020^{* 1}$	$\begin{aligned} & 11 \\ & 6 \end{aligned}$	$1.04 \times 10-3$（ 95% HPD 0.71 x ${ }^{\prime}$－ 3 ， $1.40 \times 10-3$ ）	December 3， 2019 （95\％CI November 16，2019； December 17，2019）	Unreported clock model（BEAST v1．7．0）
Lu et al．2020＊ (41)	53	－	November 29， 2019 （95\％HPD November 14， 2019；December 13，2019）	Strict clock model（BEAST v1．10．0）
Duchene et al． $2020 * 2$	47	$\begin{aligned} & 1.23 \times 10-4(95 \% \text { トi- } 5.63 \times 10-4 \text {, } \\ & 1.98 \times 10-3) \end{aligned}$	November 19， 2019 （HPD October 21，2019； December 11，2019）	Strict clock model（BEAST v1．10）
Duchene et al． $2020 * 2$	47	$\begin{aligned} & 1.29 \times 10-3 \text { (HPD } 5.35 \times 10-4,2.15 \times \\ & 10-3) \end{aligned}$	November 12， 2019 （HPD September 26，2019； December 11，2019）	Relaxed clock model（BEAST v1．10）
Volz et al．2020＊3	53	Model constrained between $7 \times 10-4$ $\& 2 \times 10-3$	December 8， 2019 （95\％CI November 21，2019； December 20，2019）	Strict clock model（BEAST v2．6．0）

Journal Pre-proof

Volz et al. 2020*3 53 \begin{tabular}{lll}
Model constrained between $5 \times 10-4$

$\& 1.25 \times 10-3$

\quad

December 5, 2019(95\% CI November 6, 2019;

December 13, 2019)

Maximum Likelihood regression

(treedater R package v0.5.0)
\end{tabular}

${ }^{1}$ http://virological.org/t/phylodynamic-analysis-of-sars-cov-2-update-2020-03-06/420; ${ }^{2}$ http://virological.org/t/temporal-signal-and-the-evolutionary-rate-of-2019-n-cov-using-47-genomes-collected-by-feb-01-2020/379; ${ }^{3}$ https://doi.org/10.25561/77169

Author Contributions

L.v.D., and F.B. conceived and designed the study; L.v.D., M.A, D.R L.P.S., C.E.F., L.O., C.J.O., J.P., C.C.S.T., F.A.T.B., and A.T.O analysed data and performed computational analyses; L.v.D., and F.B. wrote the paper with inputs from all co-authors.

Journal Pre-proof

- Phylogenetic estimates support that the COVID-2 pandemic started sometimes around 6 October 2019-11 December 2019, which corresponds to the time of the host-jump into humans.
- The diversity of SARS-CoV-2 strains in many countries recapitulates its full global diversity, consistent with multiple introductions of the virus to regions throughout the world seeding local transmission events.
- 198 sites in the SARS-CoV-2 genome appear to have already undergone recurrent, independent mut tions based on a large-scale analysis of public genome assemblies.
- Detected recurrent mutations may indicate ongoing adaptation of SARS-CoV-2 to its novel nun atı inost.
- Monitoring the build-up and patterns of genetic diversity in SARS-CoV-2 has pote, tial o anform targets for drug and vaccine development.

Region

Africa
Asia

Oceania
South America

Figure 1

20

\square ORF1ab \square S \square ORF3a \square е \square M ORF6 \square ORF7a \square ORF7b \square ORF8 \square N \square ORF10

b)

C) Site 11083, Region: Nsp6

Inferred minimum changes on tree: 37
Consistency: 0.027 , Nearest homoplasic site is 9bp away Prop. nearest neighbour has homoplasy: 0.967 (1031/1066)

Figure 3

