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Abstract (291/300 words) 
 
SARS-CoV-2 is a SARS-like coronavirus of likely zoonotic origin first identified in December 2019 
in Wuhan, the capital of China's Hubei province. The virus has since spread globally, resulting in 
the currently ongoing COVID-19 pandemic. The first whole genome sequence was published on 
January 5 2020, and thousands of genomes have been sequenced since this date. This resource 
allows unprecedented insights into the past demography of SARS-CoV-2 but also monitoring of 
how the virus is adapting to its novel human host, providing information to direct drug and 
vaccine design. We curated a dataset of 7666 public genome assemblies and analysed the 
emergence of genomic diversity over time. Our results are in line with previous estimates and 
point to all sequences sharing a common ancestor towards the end of 2019, supporting this as 
the period when SARS-CoV-2 jumped into its human host. Due to extensive transmission, the 
genetic diversity of the virus in several countries recapitulates a large fraction of its worldwide 
genetic diversity. We identify regions of the SARS-CoV-2 genome that have remained largely 
invariant to date, and others that have already accumulated diversity. By focusing on mutations 
which have emerged independently multiple times (homoplasies), we identify 198 filtered 
recurrent mutations in the SARS-CoV-2 genome. Nearly 80% of the recurrent mutations 
produced non-synonymous changes at the protein level, suggesting possible ongoing adaptation 
of SARS-CoV-2. Three sites in Orf1ab in the regions encoding Nsp6, Nsp11, Nsp13, and one in 
the Spike protein are characterised by a particularly large number of recurrent mutations (>15 
events) which may signpost convergent evolution and are of particular interest in the context of 
adaptation of SARS-CoV-2 to the human host. We additionally provide an interactive user-
friendly web-application to query the alignment of the 7666 SARS-CoV-2 genomes. 
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1 Introduction 
 
On December 31 2019, China notified the World Health Organisation (WHO) about a cluster of 
pneumonia cases of unknown aetiology in Wuhan, the capital of the Hubei Province. The initial 
evidence was suggestive of the outbreak being associated with a seafood market in Wuhan, 
which was closed on January 1 2020. The aetiological agent was characterised as a SARS-like 
betacoronavirus, later named SARS-CoV-2, and the first whole genome sequence (Wuhan-HU-
1) was deposited on NCBI Genbank on January 5 2020 (1). Human-to-human transmission was 
confirmed on January 14 2020, by which time SARS-CoV-2 had already spread to many countries 
throughout the world. Further extensive global transmission led to the WHO declaring COVID-
19 as a pandemic on March 11 2020. 
 
Betacoronaviridae comprise a large number of lineages that are found in a wide range of 
mammals and birds (2), including the other human zoonotic pathogens SARS-CoV-1 and MERS-
COV. The propensity of Betacoronaviridiae to undergo frequent host jumps supports SARS-CoV-
2 also being of zoonotic origin. To date, the genetically closest-known lineage is found in 
horseshoe bats (BatCoV RaTG13) (3). However, this lineage shares 96% identity with SARS-CoV-
2, which is not sufficiently high to implicate it as the immediate ancestor of SARS-CoV-2 (2). The 
zoonotic source of the virus remains unidentified at the date of writing (April 23 2020). 
 
The analysis of genetic sequence data from pathogens is increasingly recognised as an important 
tool in infectious disease epidemiology (4, 5). Genetic sequence data sheds light on key 
epidemiological parameters such as doubling time of an outbreak/epidemic, reconstruction of 
transmission routes and the identification of possible sources and animal reservoirs. 
Additionally, whole-genome sequence data can inform drug and vaccine design. Indeed, 
genomic data can be used to identify pathogen genes interacting with the host and allows 
characterization of the more evolutionary constrained regions of a pathogen genome, which 
should be preferentially targeted to avoid rapid drug and vaccine escape mutants. 
 
There are thousands of global SARS-CoV-2 whole-genome sequences available on the rapid data 
sharing service hosted by the Global Initiative on Sharing All Influenza Data (GISAID; 
https://www.epicov.org) (6, 7). The extraordinary availability of genomic data during the COVID-
19 pandemic has been made possible thanks to a tremendous effort by hundreds of researchers 
globally depositing SARS-CoV-2 assemblies (Table S1) and the proliferation of close to real time 
data visualisation and analysis tools including NextStrain (https://nextstrain.org) and CoV-GLUE 
(http://cov-glue.cvr.gla.ac.uk). 

 
In this work we use this data to analyse the genomic diversity that has emerged in the global 
population of SARS-CoV-2 since the beginning of the COVID-19 pandemic, based on a download 
of 7710 assemblies. We focus in particular on mutations that have emerged independently 
multiple times (homoplasies) as these are likely candidates for ongoing adaptation of SARS-CoV-
2 to its novel human host. After filtering, we characterise homoplasies at 198 sites in the SARS-
CoV-2 genome. We identify a strong signal of recurrent mutation at nucleotide position 11083 
(Codon 3606 Orf1a), together with two further sites in Orf1ab encoding the non-structural 
proteins Nsp11 and Nsp13. These, together with a mutation in the Spike protein (21575, Codon 
5), comprise the strongest putative regions under selection in our dataset. 
 
The current distribution of genomic diversity as well as ongoing allele frequency changes both 
between isolates and along the SARS-CoV-2 genome are publicly available as an open access 
and interactive web-resource available here: 
https://macman123.shinyapps.io/ugi-scov2-alignment-screen/. 
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2 Material and methods  
 
2.1 Data acquisition 
7710 SARS-CoV-2 assemblies flagged as “complete (>29,000bp)”, “high coverage only”, “low 
coverage excl” were downloaded from the GISAID Initiative EpiCoV platform as of April 19 2020 
(11:30 GMT). A full acknowledgements table of those labs which generated and uploaded data 
is provided in Table S1. Filtering was performed on the downloaded assemblies to exclude those 
deriving from animals (bat, pangolin), those with more than 1% missing sites, and otherwise 
spurious assemblies as also listed by nCov-GLUE (http://cov-glue.cvr.gla.ac.uk/#/excludedSeqs). 
This left a final dataset of 7666 assemblies for downstream analysis. Sequence metadata was 
obtained from the NextStrain Github repository 
(https://github.com/nextstrain/ncov/tree/master/data). While results presented here 
predominately focus on an analysis of the available assemblies as of April 19 2020, equivalent 
analyses were performed daily from March 24 2020. This allowed tracking of the emergence of 
genomic variants in public sequence data as assemblies were uploaded during the course of the 
pandemic. 
 
2.2. Multi-sequence alignment and maximum likelihood tree 
Assemblies were aligned against the Wuhan-Hu-1 reference genome (NC_045512.2, 
EPI_ISL_402125) using MAFFT (8) implemented via the rapid phylodynamic alignment pipeline 
provided by Augur (github.com/nextstrain/augur). Sites in the first 130bp and last 50bp of the 
alignment were masked, as were positions 18529, 29849, 29851 and 29853, following the 
protocol also advocated by NextStrain and to account for the fact many putatively artefactual 
SNPs are located at the beginning and ends of the alignment. Resulting alignments were 
manually inspected in UGene (http://ugene.net). Subsequently a maximum likelihood 
phylogenetic tree was built using the Augur tree implementation selecting RAxML as the tree-
building method (9). The resulting phylogeny was viewed and annotated using ggtree (10) 
(Figures S1-S2). Throughout, site numbering and genome structure are given using Wuhan-Hu-
1 (NC_045512.2) as reference. 
   
2.3 Phylogenetic dating 
The maximum likelihood phylogenetic tree was tested for the presence of significant molecular 
evolution over the sampling period using the roottotip() function provided in BactDating (11). 
After confirmation of a significant regression following 1000 random permutations of sampling 
dates (Figure S3), temporal calibration of the phylogeny was performed using TreeDater (12), 
assuming a strict clock model of evolution, as we do not expect a significant difference in rate 
variation across lineages at these time scales (Figure S4). To obtain confidence intervals around 
each temporal point estimate we conducted a parametric bootstrapping analysis with 25 
replicates, keeping the tree topology constant while generating new branch length estimates 
using a Poisson distribution and running the same model in TreeDater (12). We also evaluated 
all currently available estimates for tip-calibration estimates of the tMRCA of SARS-CoV-2 
together with rate estimates for other closely related betacoronaviruses (Table 1, Table S2). 
 
2.4 Maximum parsimony tree and homoplasy screen 
In parallel a Maximum Parsimony tree was built using the fast tree inference and bootstrap 
approximation offered by MPBoot (13). MPBoot was run on the alignment to reconstruct the 
Maximum Parsimony tree and to assess branch support following 1000 replicates (-bb 1000). 
The resulting Maximum Parsimony treefile was used, together with the input alignment, to 
rapidly identify recurrent mutations (homoplasies) using HomoplasyFinder (14). 
 
HomoplasyFinder provides, for each site, the minimum number of state changes required on the 
tree to explain the observed character states at the tips, as described by Fitch (15), and 
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measured via the site specific consistency index. For this analysis all ambiguous sites in the 
alignment were set to ‘N’. To assess whether any particular Open Reading Frame (ORF) showed 
evidence of more homoplasies than expected given the length of the ORF, an empirical 
distribution was obtained by sampling, with replacement, equivalent length windows and 
recording the number of homoplasies detected (Table S3). 
 
HomoplasyFinder identified 1132 homoplasies (1042 excluding masked sites), which were 
distributed over the SARS-CoV-2 genome (Figure S5, Table S4). Of these, 40 sites have a derived 
allele at >1% of the total isolates. However, homoplasies can arise due to convergent evolution 
(putatively adaptive), recombination, or via errors during the processing of sequence data. The 
latter is particularly problematic here due to the mix of technologies and methods employed by 
different contributing research groups. We therefore filtered identified homoplasies using a set 
of thresholds attempting to circumvent this problem (filtering scripts and figures are available 
at https://github.com/liampshaw/CoV-homoplasy-filtering). 
 
In summary, for each homoplasy we computed the proportion of isolates with the homoplasy 
pnn where the nearest neighbouring isolate in the phylogeny also carried the homoplasy 
(excluding identical sequences). This metric ranges between pnn=0 (all isolates with the 
homoplasy present as singletons) and pnn=1 (no singletons i.e. clustering of isolates with the 
homoplasy in the phylogeny). We reasoned that artefactual sequencing homoplasies would tend 
to show up as singletons, so excluded all homoplasies with pnn<0.1 from further analysis.  
 
To obtain a set of high confidence homoplasies, we then used the following criteria: ≥0.1% 
isolates in the alignment share the homoplasy (equivalent to >8 isolates), pnn>0.1, and derived 
allele found in strains sequenced from >1 originating lab and >1 submitting lab. We also required 
the proportion of isolates where the homoplasic site was in close proximity to an ambiguous 
base (±5 bp) to be zero. The application of these various filters reduced the number of 
homoplasies to 198 (Table S5). We also plotted the distributions of cophenetic distances 
between isolates carrying each homoplasy compared to the distribution for all isolates (Figure 
S6), and inspected the distribution of all identified homoplasies in the phylogenies from our own 
analyses and on the phylogenetic visualisation platform provided by NextStrain. Finally, we 
examined whether ambiguous bases were seen more often at homoplasic sites than at random 
bases(excluding masked sites), which was not the case (Figure S7). 
 
To further validate the homoplasy detection method applied to the alignment of the 7666 SARS-
CoV-2 genome assemblies, we took advantage of the genome sequences for which raw reads 
were available on the Short Read Archive (SRA). A variant calling pipeline (available at 
https://github.com/DamienFr/CoV-homoplasy) was used to obtain high-confidence alignments 
for the 348 (out of 889 as of April 19 2020) SRA genomic datasets both meeting our quality 
criterions and matching GISAID assemblies. The topology of the Maximum Likelihood phylogeny 
of these 348 samples was compared to that of the corresponding samples from the GISAID 
genome assemblies using a Mantel test and the Phytools R package (16) (Figures S8-S9, see 
Supplementary text). 
 
As discussed, the GISAID dataset comprises assemblies of variable quality, potentially impairing 
the detection of genuine homoplasies and/or leading to false positive SNPs due to sequencing 
error or spurious allele assignment during the production of the de novo assembly from raw 
sequence reads. Therefore, to further assess the detection of homoplasies, we applied 
HomoplasyFinder to the two datasets comprising the same 348 strains (GISAID and SRA) (Table 
S6). We detected 19 homoplasies on the dataset originating from the SRA, and 21 on the dataset 
originating from GISAID assemblies. Of these, 19 were detected in both datasets (Table S7). 
Using the same filters as for the main dataset (with the exception of the ≥0.1% frequency set to 
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≥1%), 10 and 11 homoplasies were kept in the SRA dataset and in the GISAID dataset, 
respectively. Nine sites were detected in both datasets. For sites which failed the filtering 
thresholds, this was largely due to the low number of studied accessions, which increases the 
probability of an isolated strain displaying a homoplasy e.g. if n=2 isolates have a homoplasy, by 
definition they cannot be nearest neighbours, so pnn=0. 
 
2.5 Annotation of variant and homoplasic sites 
The alignment was translated to amino acid sequences using SeaView V4 (17). Sites were 
identified as synonymous or non-synonymous and amino acid changes corresponding to these 
mutations were retrieved via multiple sequence alignment. We assessed the change in 
hydrophobicity and charge of amino acid residues arising due to homoplastic non-synonymous 
mutations using the hydrophobicity scale proposed by Janin (18). The ten most hydrophobic 
residues on this scale were considered hydrophobic and the rest as hydrophilic. In addition, 
amino acid residues were either classified as positively charged, negatively charged or neutral 
at pH 7. The charge of each residue can either increase, decrease or remain the same (neutral 
mutation) due to mutation (Figure S10). 
 
2.6 Comparison with SARS-CoV-1 and MERS-CoV 
SARS-CoV-1 and MERS-CoV are both zoonotic pathogens related to SARS-CoV-2, which 
underwent a host jump into the human host previously. We investigated whether the major 
homoplasies we detect in SARS-CoV-2 affect sites which also underwent recurrent mutations in 
these related viruses as these adapted to their human host. All Coronaviridae assemblies were 
downloaded (NCBI TaxID:11118) on 8th of April 2020 and human associated MERS-CoV and 
SARS-CoV-1 assemblies extracted. This gave a total of 15 assemblies for SARS-CoV-1 and 255 
assemblies for MERS-CoV. Following the same protocol (Augur align) as applied to SARS-CoV-2 
assemblies, each species was aligned against the respective RefSeq reference genomes: 
NC_004718.3 for SARS-CoV-1 and NC_019843.3 for MERS-CoV. This produced alignments of 
29,751bp (187 SNPs) and 30,119bp (1588 SNPs) respectively.  
 
MPBoot (13) was run on both sets of alignments to reconstruct the maximum parsimony tree 
and to assess branch support following 1000 replicates (-bb 1000). The resulting maximum 
parsimony treefiles were used, together with the input alignment, to rapidly identify 
homoplasies using HomoplasyFinder (14). For SARS-CoV-1 we detected six homoplasies and for 
MERS-CoV we detected 350 homoplasies (pre-filtering) (Figure S11-S12). The distribution of 
homoplasies was assessed relative to the Genbank annotation files and in the context of the 
high confidence homoplasies that we detect in SARS-CoV-2.  Jo
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3 Results 
 
3.1 Emergence of SARS-CoV-2 genomic diversity over time  
 
The 7666 SARS-CoV-2 genomes offer an excellent geographical and temporal coverage of the 
COVID-19 pandemic (Figure 1a-b). The genomic diversity of the 7666 SARS-CoV-2 genomes is 
represented as Maximum Likelihood phylogenies in a radial (Figure 1c) and linear layout (Figure 
S1-S2). There is a robust temporal signal in the data, captured by a statistically significant 
correlation between sampling dates and ‘root-to-tip’ distances for the 7666 SARS-CoV-2 (Figure 
S3; R2=0. 20, p<0.001). Such positive association between sampling time and evolution is 
expected to arise in the presence of measurable evolution over the timeframe over which the 
genetic data was collected. Specifically, more recently sampled strains have accumulated 
additional mutations in their genome than older ones since their divergence from the Most 
Recent Common Ancestor (MRCA, root of the tree). 
 
The origin of the regression between sampling dates and ‘root-to-tip’ distances (Figure S3) 
provides a cursory point estimate for the time to the MRCA (tMRCA) around late 2019. Using 
TreeDater (12), we observe an estimated tMRCA, which corresponds to the start of the COVID-
19 epidemic, of 6 October 2019 – 11 December 2019 (95% CIs) (Figure S4). These dates for the 
start of the epidemic are in broad agreement with previous estimates performed on smaller 
subsets of the COVID-19 genomic data using various computational methods (Table 1), though 
they should still be taken with some caution. Indeed, the sheer size of the dataset precludes the 
use of some of the more sophisticated inference methods available. 
 
The SARS-CoV-2 global population has accumulated only moderate genetic diversity at this stage 
of the COVID-19 pandemic with an average pairwise difference of 9.6 SNPs between any two 
genomes, providing further support for a relatively recent common ancestor. We estimated a 
mutation rate underlying the global diversity of SARS-Cov-2 of ~6×10-4 
nucleotides/genome/year (CI: 4x10-4 – 7x10-4) obtained following time calibration of the 
maximum likelihood phylogeny. This rate is largely unremarkable for an RNA virus (19, 20), 
despite Coronaviridae having the unusual capacity amongst viruses of proofreading during 
nucleotide replication, thanks to the non-structural protein nsp14 exonuclease, which excises 
erroneous nucleotides inserted by their main RNA polymerase nsp12 (21, 22). 
 
3.2 Everything is everywhere 
 
Some of the major clades in the maximum likelihood phylogeny (Figure 1c and Figure S1) are 
formed predominantly by strains sampled from the same continent. However, this likely 
represents a temporal rather than a geographic signal. Indeed, the earliest available strains were 
collected in Asia, where the COVID-19 pandemic started, followed by extensive genome 
sequencing efforts first in Europe and then in the USA. 
 
The SARS-CoV-2 genomic diversity found in most countries (with sufficient sequences) 
essentially recapitulates the global diversity of COVID-19 from the 7666-genome dataset. Figure 
2 highlights the proportion of the global genetic diversity found in the UK, the USA, Iceland and 
China. In the UK, the USA and Iceland, the majority of the global genetic diversity of SARS-CoV-
2 is recapitulated, with representatives of all major clades present in each of the countries 
(Figure 2A-C). The same is true for other countries such as Australia (Figure S2a).  
 
This genetic diversity of SARS-CoV-2 populations circulating in different countries points to each 
of these local epidemics having been seeded by a large number of independent introductions of 
the virus. The main exception to this pattern is China, the source of the initial outbreak, where 
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only a fraction of the global diversity is present (Figure 2d). This is also to an extent the case for 
Italy (Figure S2b), which was an early focus of the COVID-19 pandemic. However, this global 
dataset includes only 35 SARS-CoV-2 genomes from Italy, so some of the genetic diversity of 
SARS-CoV-2 strains in circulation likely remains unsampled. The genomic diversity of the global 
SARS-CoV-2 population being recapitulated in multiple countries points to extensive worldwide 
transmission of COVID-19, likely from extremely early on in the pandemic.  
 
3.3 Genetic diversity along the genome alignment and recurrent mutations (homoplasies) 
 
The SARS-CoV-2 alignment can be considered as broken into a large two-part Open Reading 
Frame (ORF) encoding non-structural proteins, four structure proteins: spike (S), envelope (E), 
membrane (M) and nucleocapsid (N), and a set of small accessory factors (Figure 3a). There is 
variation in genetic diversity across the alignment, with polymorphisms often found in 
neighbouring clusters (Figure S5). A simple permutation resampling approach suggests that both 
Orf3a and N exhibit SNPs which fall in the 95th percentile of the empirical distribution (Table S3). 
However, not all of these sites can be confirmed as true variant positions, due to the lack of 
accompanying sequence read data. However, we closely inspected those sites that appear to 
have arisen multiple times following a maximum parsimony tree building step. We identified a 
large number of putative homoplasies (n=1042 excluding masked regions), which were filtered 
to a high confidence cohort of 198 positions (see Methods). 
 
These 198 positions in the SARS-CoV-2 genome alignment (0.67% of all sites) were associated 
with 290 amino acid changes across all 7666 genomes. Of these amino acid changes, 232 
comprised non-synonymous and 58 comprised synonymous mutations. Two non-synonymous 
mutations involved the introduction or removal of stop codons were found (*13402Y, *26152G). 
53 of the remaining 101 non-synonymous mutations involved neutral hydrophobicity changes 
(Figure S10a). In addition, 79 of the remaining 101 non-synonymous mutations involved neutral 
changes (Figure S10b). Both Orf1ab and N had a four-fold higher frequency of hydrophilic → 
hydrophobic mutations than hydrophobic → hydrophilic mutations (Figure S10). In addition, 
neutral hydrophobic changes were clearly favoured in the S protein. Lastly, 87 of the remaining 
110 non-synonymous mutations involved neutral charge changes. 
 
Amongst the strongest filtered homoplasic sites (>15 change points on the tree), three are found 
within Orf1ab (nucleotide positions 11083, 13402, 16887) and S (21575). We exemplify the 
strongest signal and our approach using position 11083 in Figure 3 and provide a full list of 
homoplasic sites, both filtered and unfiltered, in Tables S4-5. The strongest hit in terms of the 
inferred minimum number of changes required (Figure 3b-c) at Orf1ab (11083 , Codon 3606) 
falls over a region encoding the non-structural protein, Nsp6, and is also observed in our 
analyses of the SRA dataset (Table S7). 
 
We note that some of the hits also overlap with positions identified as putatively under selection 
using other approaches (http://virological.org/t/selection-analysis-of-gisaid-sars-cov-2-
data/448/3, accessed April 23 2020), with Orf1ab consistently identified as a region comprising 
several candidates for non-neutral evolution. Orf1ab is an orthologous gene with other human-
associated betacoronaviruses, in particular SARS-CoV-1 and MERS-CoV which both underwent 
host jumps into humans from likely bat reservoirs (23, 24). We performed an equivalent analysis 
on human-associated virus assemblies available on the NCBI Virus platform. We identified six 
putative homoplasic sites within SARS-CoV-1, two occurring within the 3c-like proteinase just 
upstream of Nsp6 (10384, 10793) and a further two homoplasies within Orf1ab at Nsp9 and 
Nsp13 (Figure S11). In addition, one homoplasy was identified in the spike protein and one in 
the membrane protein ORFs. 
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For MERS-CoV, multiple unfiltered homoplasies were detected, consistent with previous 
observations of high recombination in this species (25), though only one invoked more than a 
minimum number of 10 changes on the maximum parsimony tree (Figure S12). This 
corresponded to a further homoplasy identified in Orf1ab Nsp6(position 11631). It is of note 
that this genomic region coincides with the strongest homoplasy in SARS-CoV-2 which also 
occurs in the Nsp6 encoding region of Orf1ab. Codon 3606 of Orf1ab shares a leucine residue in 
MERS-CoV and SARS-CoV-2, though a valine in SARS-CoV. The exact role of these and other 
homoplasic mutations in human associated betacoronaviruses represents an important area of 
future work, although it appears that the Orf1ab region may exhibit multiple putatively adapted 
variants across human betacoronavirus lineages. 
 
The genome alignment of the 7666 SARS-CoV-2 genomes can be queried through an open 
access, interactive web-application (https://macman123.shinyapps.io/ugi-scov2-alignment-
screen/). It provides users with information on every SNP and homoplasy detected across our 
global SARS-CoV-2 alignment and allows visual inspection both within the sequence alignment 
and across the maximum likelihood tree phylogeny. Figure 3 illustrates some of the 
functionalities of the web application using position 11083 in the alignment as an example. 
This particular homoplasy was observed 1078 times across the genomes and requires a 
minimum of 37 character-site changes to become congruent with the observed SARS-CoV-2 
phylogeny (Figure 3a and 3b). 
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4 Discussion 
 
Pandemics have been affecting humanity for millennia (26). Over the last century alone, several 
global epidemics have claimed millions of lives, including the 1957/58 influenza A (H2N2) 
pandemic, the sixth (1899-1923) and seventh ‘El Tor’ cholera pandemic (1961-1975), as well as 
the HIV/AIDS pandemic (1981-today). COVID-19 acts as an unwelcome reminder of the major 
threat that infectious diseases represent in terms of deaths and disruption. 
 
One positive aspect of the current situation, relative to previous pandemics, is the 
unprecedented availability of scientific and technological means to face COVID-19. In particular, 
the rapid development of drugs and vaccines has already begun. Modern drug and vaccine 
development are largely based on genetic engineering and an understanding of host-pathogen 
interactions at a molecular level. The mobilisation to address the COVID-19 pandemic by 
scientists worldwide has been remarkable. This includes the feat of the global scientific 
community who has already produced and publicly shared well over 11,000 complete SARS-CoV-
2 genome sequences at the time of writing (April 23 2020), which we have used here with 
gratitude. Further initatives in the United Kingdom (https://www.cogconsortium.uk/data/) have 
already to date produced over 10,000 genomes, some of which overlap with those already 
available on GISAID. 
 
To put these numbers of SARS-CoV-2 genomes in context, it is interesting to consider parallels 
with the 2009 H1N1pdm influenza pandemic, the first epidemic for which genetic sequence data 
was generated in near-real time (27, 28). The genetic data available at the time looks 
staggeringly small in comparison to the amount that has already been generated for SARS-CoV-
2 during the early stages of the COVID-19 pandemic. For example, Fraser et al. considered 11 
partial hemagglutinin gene sequences two months after the WHO had declared 2009 H1N1pdm 
influenza a pandemic (27). 
 
This unprecedented genomic resource has already provided strong conclusions about the 
pandemic. For example, analyses by multiple independent groups place the start of the COVID-
19 pandemic towards the end of 2019 (Table 1). This rules out any scenario that assumes SARS-
CoV-2 may have been in circulation long before it was identified, and hence have already 
infected large proportions of the population. 
 
Extensive genomic resources for SARS-CoV-1 should in principle also be key to informing on 
optimal drug and vaccine design, particularly when coupled with knowledge of human proteome 
and immune interactions (29). Ideally, drugs and vaccines should target relatively invariant, 
strongly constrained regions of the SARS-CoV-2 genome, to avoid drug resistance and vaccine 
evasion. Therefore ongoing monitoring of genomic changes in the virus will be essential to gain 
a better understanding of fundamental host-pathogen interactions that can inform drug and 
vaccine design. 
 
As most (but not all) pathogens capable of causing epidemic at a pandemic scale, SARS-CoV-2 is 
in all likelihood of zoonotic origin. This implies that SARS-CoV-2 may not be fine-tuned to its 
novel human host. However, it is near-impossible to predict future trajectories for the virulence 
and transmissibility of horizontally transmitted pathogens (30). It is also possible that the 
population of SARS-CoV-2 will evolve into different lineages characterised by variable levels of 
virulence and transmissibility. However, despite existing phylogenetic structure (31), it is 
important to stress that there is no evidence for the evolution of distinct phenotypes in SARS-
CoV-2 at this stage. 
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The vast majority of mutations observed so far in SARS-CoV-2 circulating in humans are likely 
neutral (32, 33) or even deleterious (34). Homoplasies, such as those we detect here, can arise 
by product of neutral evolution or as a result of ongoing selection. Of the 198 homoplasies we 
detect (after applying stringent filters), some proportion are very likely genuine targets of 
positive selection which signpost to ongoing adaptation of SARS-CoV-2 to its new human host. 
Indeed, we do observe an enrichment for non-synonymous changes (80%) in our filtered sites. 
As such, our provided list (Table S5) contains candidates for mutations which may affect the 
phenotype of SARS-CoV-2 and virus-host interactions and which require ongoing monitoring. 
Conversely, the finding that 78% of the homoplasic mutations involve no polarity change could 
still reflect strong evolutionary constraints at these positions (35, 36). The remaining non-neutral 
changes to amino acid properties at homoplasic sites may be enriched in candidates for 
functionally relevant adaptation and could warrant further experimental investigation. 
 
One of the strongest homoplasies lies at site 11083 in the SARS-CoV-2 genome in a region of 
Orf1a encoding Nsp6. This site passed our stringent filtering cirteria and was also present in our 
analysis of the SRA dataset (Table S7). Interestingly, this region overlaps a putative immunogenic 
peptide predicted to result in both CD4+ and CD8+ T-cell reactivity (37). More minor 
homoplasies amongst our top candidates, identified within Orf3a (Table S5), also map to a 
predicted CD4 T cell epitope. While the immune response to SARS-CoV-2 is poorly understood 
at this point, key roles for CD4 T cells, which activate B cells for antibody production, and 
cytotoxic CD8 T cells, which kill virus-infected cells, are known to be important in mediating 
clearance in respiratory viral infections (38). Of note, we also identify a strong recurrent 
mutation in nucleotide position 21575, corresponding to the SARS-CoV-2 spike protein (codon 
5). While the spike protein is the known mediator of host-cell entry, our detected homoplasy 
falls outside of the N-terminal and receptor binding domains. 
 
Our analyses presented here provide a snapshot in time of a rapidly changing situation based on 
available data. Although we have attempted to filter out homoplasies caused by sequencing 
error with stringent thresholds, and also used available short-read data to validate a subset of 
homoplasic sites in a smaller dataset, our analysis nevertheless remains reliant on the underlying 
quality of the publicly available assemblies. As such, it is possible that some results might be 
artefactual, and further investigation will be warranted as additional raw sequencing data 
becomes available. 
 
However, given the crucial importance of identifying potential signatures of adaptation in SARS-
CoV-2 for guiding ongoing development of vaccines and treatments, we have suggested what 
we believe to be a plausible approach and initial list in order to facilitate future work and 
interpretation of the observed patterns. More data continues to be made available, which will 
allow ongoing investigation by ourselves and others. We believe it is important to continue to 
monitor SARS-CoV-2 evolution in this way and to make the results available to the scientific 
community. In this context, we hope that the interactive web-application we provide will help 
identify key recurrent mutations in SARS-CoV-2 as they emerge and spread.  
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Figures and Tables 
 

 
Figure 1. Global sequencing efforts have contributed hugely to our understanding of the 
genomic diversity of SARS-CoV-2. a) Viral assemblies available from global regions as of 
19/04/2020. b) Cumulative total of viral assemblies uploaded to GISAID included in our analysis. 
c) Radial Maximum Likelihood phylogeny for 7666 complete SARS-CoV-2 genomes. Colours 
represent continents where isolates were collected. Green: Asia; Red: Europe; Purple: North 
America; Orange: Oceania; Dark blue: South America according to metadata annotations 
available on NextStrain (https://github.com/nextstrain/ncov/tree/master/data). 
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Figure 2. Genomic diversity of SARSCoV-2 in the UK, USA, Iceland and China. Strains collected 
from all four countries are highlighted on the global phylogenetic tree. a) Strains from the UK 
shown in red. b) Strains collected in the USA shown in purple. c) Strains collected in Iceland 
shown in red. d) Strains collected in China shown in green. Regional colours match to the global 
phylogeny shown in Figure 1c. 
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Figure 3: Inspection of a major homoplastic site in Orf1ab of SARS-CoV-2 genome (position 
11083). Panel A shows a color-coded schematic of the SARS-CoV-2 genome annotated as per 
NC_045512.2 and a plot of all potential homoplastic sites in Orf1ab measured as minimal 
number of character-state changes on a Maximum Parsimony tree (see Methods). Exemplar 
homoplasy (denoted with *) has been shown on the radial ML phylogenetic tree in panel B. Panel 
C shows the distribution of cophenetic distances between isolates carrying the identified 
homoplasy (red) and the distribution for all isolates (grey), showing that isolates with the 
homoplasy tend to cluster in the phylogeny. Equivalent figures for other filtered homoplasies 
are generated as part of the filtering method (see Methods).  
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Table 1. Estimates of SARS-CoV-2 time to most recent common ancestor (tMRCA). BCI: Bayesian Credible Interval; HPD: Highest Posterior Density; CI: 
Confidence Interval. Asterix * denotes non-peer reviewed estimate of tMRCA. ‘N.’ denotes the number of whole genomes analysed.  
 

Reference N. Substitution Rate (per site per year) Estimated tMRCA Method 

Li et al. 2020 (39) 32 
1.0 x 10−3 (95% BCI 1.854 x 10−4, 
4.0 x 10−3) 

October 15, 2019 (95% BCI May 2, 2019; January 
17, 2020) 

Rate-informed strict clock model 
(BEAST v1.8.4) 

Li et al. 2020 (39) 32 
1.8266 x 10−3 (95% BCI 7.5813 x 
10−4, 3.0883 x 10−3) 

December 6, 2019 (95% BCI November 16, 2019; 
December 21, 2019) 

Rate-estimated relaxed clock model 
(BEAST v1.8.4) 

Giovanetti et al. 
2020 (40) 

54 
6.58 x 10−3 (95% HPD 5.2 x 10−3, 
8.1 x 10−3) 

November 25, 2019 (95% CI September 28, 2019; 
December 21, 2019) 

Relaxed clock model (BEAST 
v1.10.4) 

Hill & Rambaut 
2020*1 

75 
0.92 x 10−3 (95% HPD 0.33 x 10−3 – 
1.46x 10−3) 

November 29, 2019 (95% CI October 28, 2019; 
December 20, 2019) 

Unreported clock model (BEAST 
v1.7.0) 

Hill & Rambaut 
2020*1 

86 
0.80 x 10−3 (95% HPD 0.14 x 10−3, 
1.31 x 10−3) 

November 17, 2019 (95% CI August 27, 2019; 
December 19, 2019) 

Unreported clock model (BEAST 
v1.7.0) 

Hill & Rambaut 
2020*1 

11
6 

1.04 x 10−3 (95% HPD 0.71 x 10−3, 
1.40 x 10−3) 

December 3, 2019 (95% CI November 16, 2019; 
December 17, 2019) 

Unreported clock model (BEAST 
v1.7.0) 

Lu et al. 2020* 
(41) 

53 
− 

November 29, 2019 (95% HPD November 14, 
2019; December 13, 2019) 

Strict clock model (BEAST v1.10.0) 

Duchene et al. 

2020*2 
47 

1.23 x 10-4(95% HPD 5.63 x 10-4, 
1.98 x 10-3) 

November 19, 2019 (HPD October 21, 2019; 
December 11, 2019) 

Strict clock model (BEAST v1.10) 

Duchene et al. 

2020*2 
47 

1.29 x 10-3 (HPD 5.35 x 10-4, 2.15 x 
10-3) 

November 12, 2019 (HPD September 26, 2019; 
December 11, 2019) 

Relaxed clock model (BEAST 
v1.10) 

Volz et al. 2020*3 53 
Model constrained between 7 x 10−4 
& 2 x 10−3 

December 8, 2019 (95% CI November 21, 2019; 
December 20, 2019) 

Strict clock model (BEAST v2.6.0) 
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Volz et al. 2020*3 53 
Model constrained between 5 x 10−4 
& 1.25 x 10−3 

December 5, 2019(95% CI November 6, 2019; 
December 13, 2019) 

Maximum Likelihood regression 

(treedater R package v0.5.0) 

 

1 http://virological.org/t/phylodynamic-analysis-of-sars-cov-2-update-2020-03-06/420; 2 http://virological.org/t/temporal-signal-and-the-evolutionary-rate-
of-2019-n-cov-using-47-genomes-collected-by-feb-01-2020/379; 3 https://doi.org/10.25561/77169 
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 Phylogenetic estimates support that the COVID-2 pandemic started sometimes around 6 October 2019 – 11 December 2019, which corresponds to the 

time of the host-jump into humans. 

 

 The diversity of SARS-CoV-2 strains in many countries recapitulates its full global diversity, consistent with multiple introductions of the virus to 

regions throughout the world seeding local transmission events. 

 

 198 sites in the SARS-CoV-2 genome appear to have already undergone recurrent, independent mutations based on a large-scale analysis of public 

genome assemblies. 

 

 Detected recurrent mutations may indicate ongoing adaptation of SARS-CoV-2 to its novel human host. 

 

 Monitoring the build-up and patterns of genetic diversity in SARS-CoV-2 has potential to inform targets for drug and vaccine development. 
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Figure 3


